Receiver Noise and sensitivity

本文深入探讨了接收机噪声的基本概念,包括大气与环境噪声的影响、噪声地板的计算、噪声因子的定义及其对接收机性能的影响。通过具体例子展示了如何计算最小可检测信号(Mds),并讨论了噪声因子在实际应用中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.1 Receiver Noise

在频率低于30MHz的时候,大气与环境的噪声占主导。因此从第一级放大器出来的noise相对显得并不是很重要。但是当频率达到VHFUHF级别的时候,第一级放大器和接收机前端的任意滤波器就成为了接收机的噪声主要来源。如果我们考虑一个理想的“无噪声”接收机,那么它的sensitivity就完全由理论上的noise-floor决定。这可以由公式Pn= kTB (kBoltzmann常数,TKelvin为单位的温度,B为系统bandwidth),在标准环境温度17°C时,这个值通常是-174dBm1Hz带宽。

                                Absolute noise floor at 17°C=-174dBm/Hz

从上面的公式,可以看到任何接收机系统的noise floor是由最终信号带宽决定的(i.e.解调器处的系统带宽)。当然在任何实际接收机中,接收机本身也会带来噪声,称作noise figure,这个noise figure必须被直接加到上面的影响里。

这里有必要详细说明下noise figure:

这是一个和天线直接相连的放大器的例子,假设天线与放大器都是Perfectly matched。测量带宽是25MHz,所以在-174dBm上加上74。在放大器输入端的噪声用kTB计算是-100dBm,这时的信号强度是-60dBm。因此输入端的C/N比为40dB。如果放大器是理想的那么它会将噪声与信号同时放大相同倍数,从而在输出端会有相同的C/N。而在实际中的放大器会加上一些自己的增益,在这个例子里,放大器的增益为20dB所以想好从-60dBm升到-40dBm。但是噪声却升高了30dB而不是20dB。所以C/N会跌到30dB因为放大器加上了10dB自身的噪声增益。

Noise Figure 被定义为:

                Noise Figure(NF) = 10log[输入端S/N / 输出端S/N]

对于一个完整的接收机系统,定义成下面这样更有用:

Noise Figure (NF) = actual S/N dB at the output – S/N dB for a noise-free receiver

如果我们考虑到实际上3dBnoise figure等于30%的最大视线范围的loss时,我们就会认识到保持noise figure到一个足够小的值是多么重要。

接收机的综合性能通常用最小接收信号(Mds)来定义,如:

Mds = -174 + NF + 10 (log BW), where BW is system bandwidth in Hz.

所以,对于一个给定的接收机如何去计算它的Mds呢?如下面的例子:

已知一个接收机的系统带宽为200kHz并且noise figure5dB,那么:

        Mds=-174 + 5 + 10log of 200000=-174 + 5 +53 = -116dBm

注:这并不就等于接收机的灵敏度。在任何实际的系统里,解调的实现需要一个最小signal/noise 比,也就是说信号比噪声要大多少才能被解调。在一个模拟系统中,S/N通常用SINADsignal/noise and Distortion)表示典型值为12dB,而在数字系统内通常定义为carrier/noise ratio(C/N)其典型值为9dB

在上面的例子里,如果它是一个数字接收机那么它的sensitivity为:

                                Receive sensitivity = -116 + 9 = -107dBm.

 

 

原文:

1.1. Receiver Noise

At frequencies below 30MHz, noise is predominantly atmospheric and environmental. The noise contribution from the first amplifier stage is therefore relatively unimportant. As the frequency reaches the VHF and UHF bands however, the first amplifier and any preceding filters become the dominant noise source in the receiver chain. If we consider an ideal ‘noise-free’ receiver, then the absolute sensitivity is limited by the theoretical noise-floor. This is determined by the expression P n  = kTB (where k is Boltzmann’s constant, T is temperature in degrees Kelvin and B is the system bandwidth) and, at a normal ambient temperature of 17°C, approximates to -174dBm in a 1Hz bandwidth.

Absolute noise floor at 17°C = -174dBm/Hz

From the above expression, it may be seen that the absolute noise floor of any receiver system is defined by the final signal bandwidth (i.e. system bandwidth at the demodulator). Also, in any practical receiver, the receiver itself will add to the noise and its Noise Figure must be added directly to the above figure. Noise Figure is defined as:

Noise Figure (NF) = 10 x log [S/N ratio at the input / S/N ratio at the output].

For a complete receiver system, this is more usefully defined as:

Noise Figure (NF) = (actual S/N dB at the output - S/N dB for a noise-free receiver).   [Equ. 1]

If we consider the fact that a 3dB noise figure equates to a 30% loss in maximum line-of-sight range, it may readily be seen that it is very important to keep the receiver noise figure to an absolute mini-mum.

The overall performance of a receiver system is usually defined by its minimum detectable signal, orMds’ and is this is given by the following expression:

Mds = -174 + NF + 10 (log BW), where BW is system bandwidth in Hz.                   [Equ. 2]

Hence, to calculate the Mds for a given receiver, see the following example:

A receiver has a system bandwidth of 200kHz and a noise figure of 5dB. From equation 2 above:

Mds = -174 + 5 + 10 (log of 200,000) =  -174 + 5 + 53 = -116dBm.

Note that this is not the same as the receiver sensitivity. In any practical system, the demodulator requires a minimum signal/noise ratio. In an analogue system, this signal/noise is generally expressed as SINAD (Signal/Noise and Distortion) and is typically about 12dB, but for digital systems it is more usually defined as carrier/noise ratio (C/N) and is typically about 9dB.

In the above example, the sensitivity of a practical (digital) receiver is therefore given by:

Receiver sensitivity = -116 + 9 = -107dBm.
Receiver (Rx) Features TP8485E utilize a differential input receiver for maximum noise immunity and common mode rejection. Input sensitivity is better than ±200mV, as required by the RS-422 and RS-485 specifications. Rx outputs feature high drive levels (typically 25mA @ VOL = 1V) to ease the design of optically coupled isolated interfaces. Receiver input resistance of 100kΩ surpasses the RS-422 specification of 4kΩ, and is eight times the RS-485 “Unit Load (UL)” requirement of 12kΩ minimum. Thus, these products are known as “one-eighth UL” transceivers, and there can be up to 256 of these devices on a network while still complying with the RS-485 loading specification. Rx inputs function with common mode voltages as great as ±7V outside the power supplies (i.e., +12V and -7V), making them ideal for long networks where induced voltages are a realistic concern. All the receivers include a “full fail-safe” function that guarantees a high level receiver output if the receiver inputs are unconnected (floating), shorted together, or connected to a terminated bus with all the transmitters disabled. Receivers easily meet the data rates supported by the corresponding driver, and all receiver outputs are three-stable via the active low RE input. Driver (Tx) Features TP8485E driver is a differential output device that delivers at least 2.5V across a 54Ω load (RS-485), and at least 2.8V across a 100Ω load (RS-422). The drivers feature low propagation delay skew to maximize bit width, and to minimize EMI, and all drivers are three-stable via the active high DE input. Full Fail-Safe All the receivers include a “full fail-safe” function that guarantees a high level receiver output if the receiver inputs are unconnected (floating), shorted together, or connected to a terminated bus with all the transmitters disabled. Receivers easily meet the data rates supported by the corresponding driver, and all receiver outputs are three-statable via the active low RE input.
最新发布
05-15
### 被动声呐公式及其在 Bellhop3D 中的应用 Bellhop3D 是一种用于模拟水下声场特性的工具,能够处理复杂的三维环境下的声传播问题[^4]。为了实现被动声呐公式的引入及绘制对应的传播损失图,在 Bellhop3D 中通常需要遵循特定的工作流程。 #### 定义被动声呐参数 被动声呐系统的性能取决于接收器灵敏度、目标反射特性等因素。对于这些因素的具体数值设定,可以通过修改输入文件来完成。例如,在 ENV 文件中定义噪声源位置、频率范围以及其他必要的物理量: ```plaintext # Example of defining a noise source in the ENV file NOISE_SOURCE 0.0 0.0 -100.0 # X Y Z coordinates (meters) FREQ_MIN 50 # Minimum frequency (Hz) FREQ_MAX 2000 # Maximum frequency (Hz) ``` #### 修改配置以适应被动声呐需求 为了让 Bellhop3D 更加贴合实际应用背景——即考虑被动声呐场景的要求,可能还需要调整一些其他的设置选项。比如增加对不同方向角分辨率的支持或是改变网格密度等。这同样是在 ENV 或者其他控制文件里完成的操作。 #### 编写自定义脚本来集成被动声呐逻辑 由于标准版的 Bellhop 并未直接提供针对被动声呐的功能模块,因此往往需要借助 MATLAB/Octave 等平台编写额外的脚本代码来进行数据预处理和后处理工作。这部分涉及到了如何读取由 Bellhop 计算得到的结果,并据此计算出所需的传播损失值。下面给出了一段简单的伪代码示例,展示了这一过程的一部分: ```matlab % Load propagation loss data from Bellhop output files into variable 'pl_data' load('propagation_loss.mat', '-v7.3'); % Adjust filename/path as necessary % Define parameters specific to your passive sonar system here... receiver_sensitivity = ... ; % Receiver sensitivity level (dB re 1uPa) target_strength = ...; % Target strength value (dB) % Calculate overall transmission loss incorporating receiver and target effects overall_transmission_loss = pl_data + receiver_sensitivity + target_strength; % Plotting results using built-in plotting functions or custom routines figure; surf(overall_transmission_loss); title('Passive Sonar Transmission Loss'); xlabel('Range (km)'); ylabel('Depth (m)'); zlabel('Transmission Loss (dB)'); colorbar; ``` 上述方法允许用户灵活地将被动声呐特有的要素融入到现有的 Bellhop3D 工作流当中去,从而获得更加贴近实际情况的研究成果[^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值