hadoop之mapreduce教程+案例学习(一)

本文详细介绍了MapReduce编程框架,包括其定义、优缺点、核心思想和编程规范。通过WordCount案例深入解析MapReduce的工作流程,讨论了Hadoop序列化的重要性和自定义bean对象实现序列化的方法。

第1章 MapReduce概述

目录

第1章 MapReduce概述

1.1 MapReduce定义

MapReduce是一个分布式运算程序的编程框架,是用户开发“基于Hadoop的数据分析应用”的核心框架。

MapReduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个Hadoop集群上。

1.2 MapReduce优缺点

1.2.1 优点

1.2.2 缺点

1.3 MapReduce核心思想

总结:分析WordCount数据流走向深入理解MapReduce核心思想。

1.4 MapReduce进程

1.5 官方WordCount源码

1.6 常用数据序列化类型

1.7 MapReduce编程规范

2.Reducer阶段

3.Driver阶段

1.8 WordCount案例实操

1.需求

 3.环境准备

4.编写程序

第2章 Hadoop序列化

2.1.1 什么是序列化

2.1.2 为什么要序列化

2.1.3 为什么不用Java的序列化

2.2 自定义bean对象实现序列化接口(Writable)

2.3 序列化案例实操

第三章(见hadoop之mapreduce教程+案例学习(二))


1.1 MapReduce定义

MapReduce一个分布式运算程序的编程框架,是用户开发“基于Hadoop的数据分析应用”的核心框架。

MapReduce核心功能是将用户编写的业务逻辑代码自带默认组件整合成一个完整的分布式运算程序,并发运行在一个Hadoop集群上。

1.2 MapReduce优缺点

1.2.1 优点

1MapReduce 易于编程

它简单的实现一些接口,就可以完成一个分布式程序,这个分布式程序可以分布到大量廉价的PC机器上运行。也就是说你写一个分布式程序,跟写一个简单的串行程序是一模一样的。就是因为这个特点使得MapReduce编程变得非常流行。

2.良好的扩展性

当你的计算资源不能得到满足的时候,你可以通过简单的增加机器来扩展它的计算能力。

3.高容错性

MapReduce设计的初衷就是使程序能够部署在廉价的PC机器上,这就要求它具有很高的容错性。比如其中一台机器挂了,它可以把上面的计算任务转移到另外一个节点上运行,不至于这个任务运行失败,而且这个过程不需要人工参与,而完全是由Hadoop内部完成的。

4.适合PB级以上海量数据的离线处理

可以实现上千台服务器集群并发工作,提供数据处理能力。

1.2.2 缺点

1.  不擅长实时计算

MapReduce无法像MySQL一样,在毫秒或者秒级内返回结果。

2.  不擅长流式计算

流式计算的输入数据是动态的,而MapReduce输入数据集是静态的,不能动态变化。这是因为MapReduce自身的设计特点决定了数据源必须是静态的

3.  不擅长DAG(有向图)计算

多个应用程序存在依赖关系,后一个应用程序的输入为前一个的输出。在这种情况下,MapReduce并不是不能做,而是使用后,每个MapReduce作业的输出结果都会写入到磁盘,会造成大量的磁盘IO,导致性能非常的低下。

1.3 MapReduce核心思想

MapReduce核心编程思想,如图4-1所示。

1)分布式的运算程序往往需要分成至少2个阶段。

2)第一个阶段的MapTask并发实例,完全并行运行,互不相干。

3)第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出。

4MapReduce编程模型只能包含一个Map阶段和一个Reduce阶段,如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序,串行运行。

总结:分析WordCount数据流走向深入理解MapReduce核心思想。

1.4 MapReduce进程

 

一个完整的MapReduce程序在分布式运行时有三类实例进程:

 

1MrAppMaster:负责整个程序的过程调度及状态协调。

 

 

2MapTask:负责Map阶段的整个数据处理流程。

 

 

3ReduceTask:负责Reduce阶段的整个数据处理流程。

 

 

1.5 官方WordCount源码

采用反编译工具反编译源码,发现WordCount案例有Map类、Reduce类和驱动类。且数据的类型是Hadoop自身封装的序列化类型。

1.6 常用数据序列化类型

表4-1 常用的数据类型对应的Hadoop数据序列化类型
Java类型Hadoop Writable类型
booleanBooleanWritable
byteByteWritable
intIntWritable
floatFloatWritable
longLongWritable
doubleDoubleWritable
StringText
mapMapWritable
arrayArrayWritable

 

1.7 MapReduce编程规范

用户编写的程序分成三个部分:MapperReducerDriver

1Mapper阶段

1)用户自定义的Mapper要继承自己的父类

2Mapper的输入数据是KV对的形式(KV的类型可自定义)

3Mapper中的业务逻辑写在map()方法中

4Mapper的输出数据是KV对的形式(KV的类型可自定义)

5map()方法(MapTask进程)对每一个<K,V>调用一次

2Reducer阶段

1)用户自定义的Reducer要继承自己的父类

2Reducer的输入数据类型对应Mapper的输出数据类型,也是KV

3Reducer的业务逻辑写在reduce()方法中

4ReduceTask进程对每一组相同k<k,v>组调用一次reduce()方法

3Driver阶段

相当于YARN集群的客户端,用于提交我们整个程序到YARN集群,提交的是封装了MapReduce程序相关运行参数的job对象

1.8 WordCount案例实操

1.需求

在给定的文本文件中统计输出每一个单词出现的总次数

需求分析

按照MapReduce编程规范,分别编写MapperReducerDriver,如图4-2所示。

 

 3.环境准备

 

 

 (2)在pom.xml文件中添加如下依赖

<dependencies>
		<dependency>
			<groupId>junit</groupId>
			<artifactId>junit</artifactId>
			<version>RELEASE</version>
		</dependency>
		<dependency>
			<groupId>org.apache.logging.log4j</groupId>
			<artifactId>log4j-core</artifactId>
			<version>2.8.2</version>
		</dependency>
		<dependency>
			<groupId>org.apache.hadoop</groupId>
			<artifactId>hadoop-common</artifactId>
			<version>2.7.2</version>
		</dependency>
		<dependency>
			<groupId>org.apache.hadoop</groupId>
			<artifactId>hadoop-client</artifactId>
			<version>2.7.2</version>
		</dependency>
		<dependency>
			<groupId>org.apache.hadoop</groupId>
			<artifactId>hadoop-hdfs</artifactId>
			<version>2.7.2</version>
		</dependency>
</dependencies>

(2)在项目的src/main/resources目录下,新建一个文件,命名为“log4j.properties”,在文件中填入。

log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

4.编写程序

(1)编写Mapper类

package com.caigua.mapreduce;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class WordcountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
	
	Text k = new Text();
	IntWritable v = new IntWritable(1);
	
	@Override
	protected void map(LongWritable key, Text value, Context context)	throws IOException, InterruptedException {
		
		// 1 获取一行
		String line = value.toString();
		
		// 2 切割
		String[] words = line.split(" ");
		
		// 3 输出
		for (String word : words) {
			
			k.set(word);
			context.write(k, v);
		}
	}
}

(2)编写Reducer类

package com.caigua.mapreduce.wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class WordcountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{

int sum;
IntWritable v = new IntWritable();

	@Override
	protected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {
		
		// 1 累加求和
		sum = 0;
		for (IntWritable count : values) {
			sum += count.get();
		}
		
		// 2 输出
       v.set(sum);
		context.write(key,v);
	}
}

(3)编写Driver驱动类

package com.caigua.mapreduce.wordcount;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordcountDriver {

	public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {

		// 1 获取配置信息以及封装任务
		Configuration configuration = new Configuration();
		Job job = Job.getInstance(configuration);

		// 2 设置jar加载路径
		job.setJarByClass(WordcountDriver.class);

		// 3 设置map和reduce类
		job.setMapperClass(WordcountMapper.class);
		job.setReducerClass(WordcountReducer.class);

		// 4 设置map输出
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(IntWritable.class);

		// 5 设置最终输出kv类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);
		
		// 6 设置输入和输出路径
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));

		// 7 提交
		boolean result = job.waitForCompletion(true);

		System.exit(result ? 0 : 1);
	}
}

5.本地测试

1)如果电脑系统是win7的就将win7hadoop jar包解压到非中文路径,并在Windows环境上配置HADOOP_HOME环境变量。如果是电脑win10操作系统,就解压win10hadoop jar包,并配置HADOOP_HOME环境变量。

注意:win8电脑和win10家庭版操作系统可能有问题,需要重新编译源码或者更改操作系统。

2)在Eclipse/Idea上运行程序

6.集群上测试

(0)用maven打jar包,需要添加的打包插件依赖

注意:标记红颜色的部分需要替换为自己工程主类

<build>
		<plugins>
			<plugin>
				<artifactId>maven-compiler-plugin</artifactId>
				<version>2.3.2</version>
				<configuration>
					<source>1.8</source>
					<target>1.8</target>
				</configuration>
			</plugin>
			<plugin>
				<artifactId>maven-assembly-plugin </artifactId>
				<configuration>
					<descriptorRefs>
						<descriptorRef>jar-with-dependencies</descriptorRef>
					</descriptorRefs>
					<archive>
						<manifest>
							<mainClass>com.atguigu.mr.WordcountDriver</mainClass>
						</manifest>
					</archive>
				</configuration>
				<executions>
					<execution>
						<id>make-assembly</id>
						<phase>package</phase>
						<goals>
							<goal>single</goal>
						</goals>
					</execution>
				</executions>
			</plugin>
		</plugins>
	</build>

注意:如果工程上显示红叉。在项目上右键->maven->update project即可。

(1)将程序打成jar包,然后拷贝到Hadoop集群中

步骤详情:右键->Run as->maven install。等待编译完成就会在项目的target文件夹中生成jar包。如果看不到。在项目上右键-》Refresh,即可看到。修改不带依赖的jar包名称为wc.jar,并拷贝该jar包到Hadoop集群。

(2)启动Hadoop集群

(3)执行WordCount程序

$ hadoop jar  wc.jar
 com.caigua.wordcount.WordcountDriver /user/caigua/input /user/caigua/output

第2章 Hadoop序列化

2.1.1 什么是序列化

 序列化就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储到磁盘持久化)和网络传输。 

反序列化就是将收到字节序列(或其他数据传输协议)或者的持久化数据,转换成内存中的对象

2.1.2 为什么要序列化

 一般来说,“活的”对象只生存在内存里,关机断电就没有了。而且“活的”对象只能由本地的进程使用,不能被发送到网络上的另外一台计算机。 然而序列化可以存储“活的”对象,可以将“活的”对象发送到远程计算机。

2.1.3 为什么不用Java的序列化

Java的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带很多额外的信息(各种校验信息,Header,继承体系等),不便于在网络中高效传输。所以,Hadoop自己开发了一套序列化机制(Writable

Hadoop序列化特点

1紧凑 高效使用存储空间。

2快速读写数据的额外开销小。

3)可扩展:随着通信协议的升级而可升级

4互操作支持多语言的交互

2.2 自定义bean对象实现序列化接口(Writable)

在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在Hadoop框架内部传递一个bean对象,那么该对象就需要实现序列化接口。

具体实现bean对象序列化步骤如下7步。

(1)必须实现Writable接口

(2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造

public FlowBean() {
	super();
}

(3)重写序列化方法

@Override
public void write(DataOutput out) throws IOException {
	out.writeLong(upFlow);
	out.writeLong(downFlow);
	out.writeLong(sumFlow);
}

(4)重写反序列化方法

@Override
public void readFields(DataInput in) throws IOException {
	upFlow = in.readLong();
	downFlow = in.readLong();
	sumFlow = in.readLong();
}

5注意反序列化的顺序和序列化的顺序完全一致

(6)要想把结果显示在文件中,需要重写toString(),可用”\t”分开,方便后续用。

(7)如果需要将自定义的bean放在key中传输,则还需要实现Comparable接口,因为MapReduce框中的Shuffle过程要求对key必须能排序。详见后面排序案例。

@Override
public int compareTo(FlowBean o) {
	// 倒序排列,从大到小
	return this.sumFlow > o.getSumFlow() ? -1 : 1;
}

2.3 序列化案例实操

1.    需求

统计每一个手机号耗费的总上行流量、下行流量、总流量

1)输入数据

2)输入数据格式:

7      13560436666     120.196.100.99           1116          954                   200

id      手机号码           网络ip                        上行流量  下行流量     网络状态码

3)期望输出数据格式

13560436666             1116                954                          2070

手机号码               上行流量        下行流量                  总流量

2.需求分析

 

3.编写MapReduce程序

(1)编写流量统计的Bean对象

package com.caigua.mapreduce.flowsum;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.Writable;

// 1 实现writable接口
public class FlowBean implements Writable{

	private long upFlow;
	private long downFlow;
	private long sumFlow;
	
	//2  反序列化时,需要反射调用空参构造函数,所以必须有
	public FlowBean() {
		super();
	}

	public FlowBean(long upFlow, long downFlow) {
		super();
		this.upFlow = upFlow;
		this.downFlow = downFlow;
		this.sumFlow = upFlow + downFlow;
	}
	
	//3  写序列化方法
	@Override
	public void write(DataOutput out) throws IOException {
		out.writeLong(upFlow);
		out.writeLong(downFlow);
		out.writeLong(sumFlow);
	}
	
	//4 反序列化方法
	//5 反序列化方法读顺序必须和写序列化方法的写顺序必须一致
	@Override
	public void readFields(DataInput in) throws IOException {
		this.upFlow  = in.readLong();
		this.downFlow = in.readLong();
		this.sumFlow = in.readLong();
	}

	// 6 编写toString方法,方便后续打印到文本
	@Override
	public String toString() {
		return upFlow + "\t" + downFlow + "\t" + sumFlow;
	}

	public long getUpFlow() {
		return upFlow;
	}

	public void setUpFlow(long upFlow) {
		this.upFlow = upFlow;
	}

	public long getDownFlow() {
		return downFlow;
	}

    public void setDownFlow(long downFlow) {
		this.downFlow = downFlow;
	}

	public long getSumFlow() {
		return sumFlow;
	}

	public void setSumFlow(long sumFlow) {
		this.sumFlow = sumFlow;
	}
}

(2)编写Mapper类

package com.caigua.mapreduce.flowsum;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class FlowCountMapper extends Mapper<LongWritable, Text, Text, FlowBean>{
	
	FlowBean v = new FlowBean();
	Text k = new Text();
	
	@Override
	protected void map(LongWritable key, Text value, Context context)	throws IOException, InterruptedException {
		
		// 1 获取一行
		String line = value.toString();
		
		// 2 切割字段
		String[] fields = line.split("\t");
		
		// 3 封装对象
		// 取出手机号码
		String phoneNum = fields[1];

		// 取出上行流量和下行流量
		long upFlow = Long.parseLong(fields[fields.length - 3]);
		long downFlow = Long.parseLong(fields[fields.length - 2]);

		k.set(phoneNum);
		v.set(downFlow, upFlow);
		
		// 4 写出
		context.write(k, v);
	}
}

(3)编写Reducer类

package com.caigua.mapreduce.flowsum;
import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class FlowCountReducer extends Reducer<Text, FlowBean, Text, FlowBean> {

	@Override
	protected void reduce(Text key, Iterable<FlowBean> values, Context context)throws IOException, InterruptedException {

		long sum_upFlow = 0;
		long sum_downFlow = 0;

		// 1 遍历所用bean,将其中的上行流量,下行流量分别累加
		for (FlowBean flowBean : values) {
			sum_upFlow += flowBean.getUpFlow();
			sum_downFlow += flowBean.getDownFlow();
		}

		// 2 封装对象
		FlowBean resultBean = new FlowBean(sum_upFlow, sum_downFlow);
		
		// 3 写出
		context.write(key, resultBean);
	}
}

(4)编写Driver驱动类

package com.caigua.mapreduce.flowsum;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FlowsumDriver {

	public static void main(String[] args) throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException {
		
// 输入输出路径需要根据自己电脑上实际的输入输出路径设置
args = new String[] { "e:/input/inputflow", "e:/output1" };

		// 1 获取配置信息,或者job对象实例
		Configuration configuration = new Configuration();
		Job job = Job.getInstance(configuration);

		// 6 指定本程序的jar包所在的本地路径
		job.setJarByClass(FlowsumDriver.class);

		// 2 指定本业务job要使用的mapper/Reducer业务类
		job.setMapperClass(FlowCountMapper.class);
		job.setReducerClass(FlowCountReducer.class);

		// 3 指定mapper输出数据的kv类型
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(FlowBean.class);

		// 4 指定最终输出的数据的kv类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(FlowBean.class);
		
		// 5 指定job的输入原始文件所在目录
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));

		// 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
		boolean result = job.waitForCompletion(true);
		System.exit(result ? 0 : 1);
	}
}

 

第三章(见hadoop之mapreduce教程+案例学习(二))

评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值