图像处理
孤独de雨
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
SIFT特征详细描述
一、介绍 特征的检测和匹配在许多计算机视觉应用中是一个重要的组成部分,例如无缝拼接,三维重建等。其中兴趣点特征是很重要的一类特征,而目前应用最广泛的兴趣点特征检测方法就是SIFT检测算法,该检测算法所得到的特征点不仅在位置上能够稳定识别,而且具有尺度不变性和旋转不变性。由于各大论坛以及该论文作者都只是给出matlab的实现算法,并未给出C++的版本,而且由于在SIFT的实现过程中有很多参数设置和转载 2015-04-21 10:06:42 · 1321 阅读 · 0 评论 -
BING : Binarized Normed Gradients for Objectness Estimation at 300fps 论文笔记
这篇CVPR2014的论文与之前那篇Boosting Binary Keypoint Detection一样,都是利用二进制来加速计算。不过这篇并不是做特征,而是去找图中的Object。它主要有两大亮点。第一个亮点是发现了在固定窗口的大小下,物体与背景的梯度模式有所不同。如图1所示。图1(a)中绿框代表背景,红框代表物体。如果把这些框都resize成固定大小,比如8X8,然后求出8X8这些块中每个转载 2015-05-29 10:34:15 · 751 阅读 · 1 评论 -
目标检测的图像特征提取之LBP特征
原地址:http://blog.youkuaiyun.com/zouxy09/article/details/7929531 LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和 D. Harwood 在1994年提出,用于纹理特征提取。而转载 2015-05-26 09:27:42 · 752 阅读 · 0 评论 -
运动检测ViBe算法python实现
运动物体检测一般分为背景建模和运动物体分析两步。即构建不包含运动物体的背景模型。然后将新的视频帧和背景模型对比,找出其中的运动物体。目前比较好的背景建模算法有两种:1)文章(Zivkovic Z. (2004) Improved adaptive Gausianmixture model for backgroundsubtraction, Proceedings of ICPR 2004,原创 2016-07-02 17:30:11 · 12120 阅读 · 82 评论
分享