透视变换

本文介绍了透视变换的基本概念,包括其定义、通用变换公式及如何通过已知的几个点求取变换公式。此外还提到了单应矩阵的概念及其在图像配准中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://blog.youkuaiyun.com/xiaowei_cqu/article/details/26471527

透视变换(Perspective Transformation)是将图片投影到一个新的视平面(Viewing Plane),也称作投影映射(Projective Mapping)。通用的变换公式为:


u,v是原始图片左边,对应得到变换后的图片坐标x,y,其中
变换矩阵可以拆成4部分,表示线性变换,比如scaling,shearing和ratotion。用于平移,产生透视变换。所以可以理解成仿射等是透视变换的特殊形式。经过透视变换之后的图片通常不是平行四边形(除非映射视平面和原来平面平行的情况)。

重写之前的变换公式可以得到,这里设w=1:


所以,已知变换对应的几个点就可以求取变换公式。反之,特定的变换公式也能新的变换后的图片。


补充:

homography matrix 单应矩阵
单应矩阵是图像配准中的一个重要变换矩阵,两幅图像AB,其中一幅A在另一幅B存在一种变换而且是一一对应的关系,他们之间可以用矩阵表示 这个矩阵用单应矩阵。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值