故障电弧检测算法概述
故障电弧检测通常涉及分析电流或电压波形中的高频噪声、波形畸变等特征。常见方法包括快速傅里叶变换(FFT)、小波变换、机器学习分类等。以下是分步骤的实现方法。
电流信号模拟与特征提取
使用Python模拟含噪声的电流信号,并提取高频特征:
import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import fft
# 模拟正常电流信号(50Hz正弦波)
t = np.linspace(0, 0.1, 1000)
normal_current = 10 * np.sin(2 * np.pi * 50 * t)
# 添加故障电弧噪声(高频脉冲)
fault_arc = 2 * np.random.randn(1000) * (np.random.rand(1000) > 0.98)
faulty_current = normal_current + fault_arc
# FFT分析
fft_normal = np.abs(fft(normal_current))
fft_faulty = np.abs(fft(faulty_current))
freq = np.linspace(0, 5000, 1000)
plt.plot(freq[:100], fft_normal[:100], label="Normal")
plt.plot(freq[:100], fft_faulty[:100], label="Faulty")
plt.xlabel("Frequency (Hz)")
plt.legend()
plt.show()
小波变换检测瞬态特征
利用PyWavelets库捕捉高频瞬态信号:
import pywt
# 使用Daubechies小波分解
coeffs = pywt.wavedec(faulty_current, 'db4', level=5)
# 高频系数阈值处理(去噪)
threshold = 0.5 * np.max(np.abs(coeffs[-1]))
coeffs[1:] = [pywt.threshold(c, threshold, mode='soft') for c in coeffs[1:]]
# 重构信号
reconstructed = pywt.waverec(coeffs, 'db4')
plt.plot(t, faulty_current, label="Original")
plt.plot(t, reconstructed, label="Denoised")
plt.legend()
plt.show()
机器学习分类(SVM示例)
提取特征后训练分类模型:
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
# 特征提取:谐波幅值、波形熵等
def extract_features(signal):
fft_vals = np.abs(fft(signal))
harmonics = [fft_vals[i] for i in range(50, 500, 50)]
entropy = -np.sum(fft_vals * np.log(fft_vals + 1e-10))
return harmonics + [entropy]
# 生成训练数据
X = [extract_features(normal_current if i < 500 else faulty_current) for i in range(1000)]
y = [0] * 500 + [1] * 500 # 标签:0=正常, 1=故障
# 训练SVM
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
clf = SVC(kernel='rbf').fit(X_train, y_train)
print("Accuracy:", clf.score(X_test, y_test))
故障电弧串扰解决方法
串扰问题通常由线路耦合或共模干扰引起,可通过以下方式缓解:
硬件层面
- 使用屏蔽电缆或双绞线降低电磁耦合。
- 增加共模扼流圈或滤波器抑制高频噪声。
软件层面
- 差分信号处理:采集差分电流信号(如霍尔传感器)。
- 自适应滤波:
from scipy.signal import lfilter
# LMS自适应滤波器
def lms_filter(reference, primary, step_size=0.01):
n = len(primary)
weights = np.zeros(100)
output = np.zeros(n)
for i in range(100, n):
x = reference[i-100:i]
output[i] = np.dot(weights, x)
error = primary[i] - output[i]
weights += step_size * error * x
return output
denoised_signal = lms_filter(reference_noise, faulty_current)
完整检测流程代码
整合上述模块的示例:
def arc_detection_pipeline(current_signal):
# 1. 小波去噪
coeffs = pywt.wavedec(current_signal, 'db4', level=5)
coeffs[1:] = [pywt.threshold(c, 0.5*np.max(np.abs(coeffs[-1])), 'soft') for c in coeffs[1:]]
denoised = pywt.waverec(coeffs, 'db4')
# 2. 特征提取
features = extract_features(denoised)
# 3. 分类预测
return clf.predict([features])[0] # 返回0/1
1977

被折叠的 条评论
为什么被折叠?



