资料来源 : 小林coding
小林官方网站 : 小林coding (xiaolincoding.com)
「为什么 MySQL 采用 B+ 树作为索引?」这句话,是不是在面试时经常出现。
要解释这个问题,其实不单单要从数据结构的角度出发,还要考虑磁盘 I/O 操作次数,因为 MySQL 的数据是存储在磁盘中的嘛。
这次,就跟大家一层一层的分析这个问题,图中包含大量的动图来帮助大家理解,相信看完你就拿捏这道题目了!
怎样的索引的数据结构是好的?
MySQL 的数据是持久化的,意味着数据(索引+记录)是保存到磁盘上的,因为这样即使设备断电了,数据也不会丢失。
磁盘是一个慢的离谱的存储设备,有多离谱呢?
人家内存的访问速度是纳秒级别的,而磁盘访问的速度是毫秒级别的,也就是说读取同样大小的数据,磁盘中读取的速度比从内存中读取的速度要慢上万倍,甚至几十万倍。
磁盘读写的最小单位是扇区,扇区的大小只有 512B
大小,操作系统一次会读写多个扇区,所以操作系统的最小读写单位是块(Block)。Linux 中的块大小为 4KB
,也就是一次磁盘 I/O 操作会直接读写 8 个扇区。
由于数据库的索引是保存到磁盘上的,因此当我们通过索引查找某行数据的时候,就需要先从磁盘读取索引到内存,再通过索引从磁盘中找到某行数据,然后读入到内存,也就是说查询过程中会发生多次磁盘 I/O,而磁盘 I/O 次数越多,所消耗的时间也就越大。
所以,我们希望索引的数据结构能在尽可能少的磁盘的 I/O 操作中完成查询工作,因为磁盘 I/O 操作越少,所消耗的时间也就越小。
另外,MySQL 是支持范围查找的,所以索引的数据结构不仅要能高效地查询某一个记录,而且也要能高效地执行范围查找。
所以,要设计一个适合 MySQL 索引的数据结构,至少满足以下要求:
- 能在尽可能少的磁盘的 I/O 操作中完成查询工作;
- 要能高效地查询某一个记录,也要能高效地执行范围查找;
分析完要求后,我们针对每一个数据结构分析一下。
什么是二分查找?
索引数据最好能按顺序排列,这样可以使用「二分查找法」高效定位数据。
假设我们现在用数组来存储索引,比如下面有一个排序的数组,如果要从中找出数字 3,最简单办法就是从头依次遍历查询,这种方法的时间复杂度是 O(n),查询效率并不高。因为该数组是有序的,所以我们可以采用二分查找法,比如下面这张采用二分法的查询过程图:
可以看到,二分查找