474. Ones and Zeroes

本文探讨了一个计算机科学领域的优化问题——如何利用有限数量的0和1来构造给定数组中的尽可能多的字符串。每个0和1只能使用一次,并且总数不超过100个。通过实例说明了如何求解此问题,并提供了一段C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

In the computer world, use restricted resource you have to generate maximum benefit is what we always want to pursue.

For now, suppose you are a dominator of m 0s and n 1s respectively. On the other hand, there is an array with strings consisting of only0s and 1s.

Now your task is to find the maximum number of strings that you can form with given m 0s and n 1s. Each 0 and 1 can be used at mostonce.

Note:

  1. The given numbers of 0s and 1s will both not exceed 100
  2. The size of given string array won't exceed 600.

Example 1:

Input: Array = {"10", "0001", "111001", "1", "0"}, m = 5, n = 3
Output: 4

Explanation: This are totally 4 strings can be formed by the using of 5 0s and 3 1s, which are “10,”0001”,”1”,”0”

Example 2:

Input: Array = {"10", "0", "1"}, m = 1, n = 1
Output: 2

Explanation: You could form "10", but then you'd have nothing left. Better form "0" and "1".




class Solution {  
public:  
    int findMaxForm(vector<string>& strs, int m, int n) {  
        vector<vector<int>> dp(m+1, vector<int>(n+1, 0));  
        int cnt0, cnt1;  
          
        for(auto str:strs) {  
            cnt0 = 0;  
            cnt1 = 0;  
            for(auto c:str) {  
                if(c == '0') ++cnt0;  
                else ++cnt1;  
            }  
              
            for(int i=m; i>=cnt0; --i) {  
                for(int j=n; j>=cnt1; --j) {  
                    dp[i][j] = max(dp[i][j], dp[i-cnt0][j-cnt1]+1);  
                }  
            }  
        }  
          
        return dp[m][n];  
    }  
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值