1,kafka的安装,参照kafka的安装文档
第一步:建立一个自己的topic:
bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic testspark
启动自己的topic
bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test
第二步:基于maven来构建kafka环境
(1)pom文件:见单独文件
(2)已经安装hbase(本例的hbase表格为:test1)
(3)源码:只是很简单的将数据接过来并写入hbase
import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.client.{Get, Put, HTable}
import org.apache.hadoop.hbase.util.Bytes
import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka._
import org.apache.spark.SparkConf
object testkafka {
def main(args: Array[String]) {
// if (args.length < 4) {
// System.err.println("Usage: KafkaWordCount <zkQuorum> <group> <topics> <numThreads>")
// System.exit(1)
// }
// StreamingExamples.setStreamingLogLevels()
//val Array(zkQuorum, group, topics, numThreads) = args
val zkQuorum = "10.248.27.3:2181"
val group = "1"
val topics = "testspark"
val numThreads = 2
val sparkConf = new SparkConf().setAppName("testkafka").setMaster("local[2]")
val ssc = new StreamingContext(sparkConf, Seconds(2))
//hbase的配置
val tablename = "test1"
val conf = HBaseConfiguration.create
conf.set("hbase.zookeeper.quorum","10.248.27.1,10.248.27.2,10.248.27.3,10.248.27.4,10.248.27.5")
conf.set("hbase.zookeeper.property.clientPort","2181")
conf.set("hbase.master","10.248.27.1:60000")
val table = new HTable(conf, tablename)
val databytes = Bytes.toBytes("id")
// ssc.checkpoint("checkpoint")
val topicpMap = topics.split(",").map((_,numThreads)).toMap
val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicpMap).map(_._2)
val words = lines.flatMap(_.split(" "))
// words.collect().foreach(x=>println(x))
words.print()
//val pairs = words.map(word => (word, 1))
// val wordCounts = pairs.reduceByKey(_ + _)
words.foreachRDD(rdd=>{
val data=rdd.collect().foreach(x=>{
val row = Bytes.toBytes("row" + x.toString)
val p1 = new Put(row)
p1.add(databytes, Bytes.toBytes("test"+x.toString), Bytes.toBytes("value" + x.toString))
table.put(p1)
})
println("************************************************"+data)
})
ssc.start()
ssc.awaitTermination()
}
(4):在idea中本地启动程序,在打开的topic中输入数据,再去hbase表格中查询数据。
Pom.xml
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<artifactId>KafkaSparkStreamingHbase</artifactId>
<version>1.0-SNAPSHOT</version>
<maven.compiler.source>1.5</maven.compiler.source>
<maven.complier.target>1.5</maven.complier.target>
<encoding>UTF-8</encoding>
<scala.version>2.10.2</scala.version>
</properties>
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.10.2</version>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-actors</artifactId>
<version>2.10.2</version>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-compiler</artifactId>
<version>2.10.2</version>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-reflect</artifactId>
<version>2.10.2</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.module</groupId>
<artifactId>jackson-module-scala_2.10</artifactId>
<version>2.4.4</version>
</dependency>
<groupId>com.typesafe.akka</groupId>
<artifactId>akka-actor_2.10</artifactId>
<version>2.3.6</version>
</dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.10</artifactId>
<version>1.3.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-assembly_2.10</artifactId>
<version>1.1.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.10</artifactId>
<version>1.3.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka_2.10</artifactId>
<version>1.3.1</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.34</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase</artifactId>
<version>0.98.1-hadoop2</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-client</artifactId>
<version>0.98.1-hadoop2</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-common</artifactId>
<version>0.98.1-hadoop2</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-server</artifactId>
<version>0.98.1-hadoop2</version>
</dependency>
<build>
<sourceDirectory>src/main/spark/</sourceDirectory>
<testSourceDirectory>src/test/scala/</testSourceDirectory>
<plugins>
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<version>2.15.2</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
<configuration>
<args>
<arg>-dependencyfile</arg>
<arg>${project.build.directory}/.scala_dependencies</arg>
</args>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>