稀疏表达以及相关改进

学习 http://blog.youkuaiyun.com/tiandijun/article/details/41578175  后随笔

1,sparse representation


解决问题:当数据量增大后,线性表达的基求解十分复杂,而且很多事多余的,稀疏表达可以解决这个问题。

稀疏直观理解就是在满足误差小和非零项尽可能多,非零项就是解决零范数问题,但是约束太强,是非凸问题,松弛约束之后就是1范数,这个是凸优化问题,然后就继续

松弛,有了p范数的问题。


如果从一个很大的dictionary里选择,很有可能会有一个与输入极为相似,这也就很有可能有sparse solution [0,...,1,...0];

所以一个有过完备字典(over complete dictionary),稀疏解可以work


Limitations of sparse representation



改进

Nonlocally Centralized Sparse Representation

[1]W. Dong, L. Zhang and G. Shi, “Centralized Sparse Representation for ImageRestoration”, in ICCV 2011.

[2]W. Dong, L. Zhang, G. Shi and X.Li, “NonlocallyCentralized Sparse Representation for Image Restoration”,IEEE Trans. on ImageProcessing,vol. 22, no. 4, pp.1620-1630, April 2013.

NCSR: idea



NCSR: objective function



NCSR:solution


NCSR: The parameters and dictionaries




Gradient Histogram Preservation

[1] W. Zuo, L. Zhang, C. Song, and D. Zhang, “Texture Enhanced Image Denoisingvia

Gradient Histogram Preservation,” in CVPR 2013.

[2] W. Zuo, L. Zhang, C. Song, D. Zhang, and H.Gao, “GradientHistogram Estimation

and Preservation for Texture Enhanced Image Denoising,” in TIP 2014.


针对问题:

Like noise, textures are fine scale structures in images,and most of the denoising algorithms will remove the textures while removingnoise.

• Is it possibleto preserve the texture structures, to some extent, in denoising?


GHP:



Group sparsity

想法: 

通常认为一些东西的基(basis)和另一些东西不同,所以可以按照sample or feature分group.

An observation that features or data items within a group are expected to share the same sparsity pattern in their latent factor representation.

Different types of features, such as in CV: pixel values, gradient features, 3D pose features, etc. 同种feature组成一个group



Rank decomposition

rank 描述的是矩阵的相关性属性,其中的每一个atomy因为位置和排列呈现出二维的秩序,所以rank decomposition 是从2D角度剖析相似度的structure.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值