问题描述:使用labelme标注的picture和json 总数量太少(即样本太少,无法满足训练的要求),因此预先对已经标注的图片进行随机裁剪和创建对应的json串,以增加数据量;
# -*- coding: utf-8 -*-
import os
import sys
import json
import io
import random
import re
from PIL import Image
source_path = r'F:\sxj\20210518\result'
destination_path = r'F:\sxj\20210518\crop'
n = 1 # 每一张图片需要裁剪的次数
article_info = {}
data_json = json.loads(json.dumps(article_info))
data_json['version'] = '3.6.16'
data_json['flags'] = {}
data_json["lineColor"] = [
0,
255,
0,
128
]
data_json["fillColor"] = [
255,
0,
0,
128
]
def file_name(file_dir):
L = []
for root, dirs, files in os.walk(file_dir):
for file in files:
if os.path.splitext(file)[1] == '.json':
L.append