1、思想:
与SVM不同,SVM直接利用线性映射的结果进行计算损失值,而softmax需要对线性映射得到的值进行指数归一化,然后在进行损失值计算。在SVM损失函数中使用的是折叶函数,而在softmax中使用的交叉熵函数。
2、损失函数公式:
每个测试样本的损失值计算
所有测试样本的损失值计算
3、梯度公式:
http://www.jianshu.com/p/8eb17fa41164#给出了很详细的推导过程
4、代码实现:
softmax.py
import numpy as np
from random import shuffle
#from past.builtins import xrange
def softmax_loss_naive(W, X, y, reg):
"""
Softmax loss function, naive implementation (with loops)
Inputs have dimension D, there are C classes, and we operate on minibatches
of N examples.
Inputs:
- W: A numpy array of shape (D, C) containing weights.
- X: A numpy array of shape (N, D) containing a minibatch of data.
- y: A numpy array of shape (N,) containing training labels; y[i] = c means
that X[i] has label c, where 0 <= c < C.
- reg: (float) regularization strength
Returns a tuple of:
- loss as single float
- gradient with respect to weights W; an array of same shape as W
"""
# Initialize the loss and gradient to zero.
loss = 0.0
dW = np.zeros_like(W)
#############################################################################
# TODO: Compute the softmax loss and its gradient using explicit loops. #
# Store the loss in loss and the gradient in dW. If you are not careful #
# here, it is easy to run into numeric instability. Don't forget the #
# regularization! #
#################################