- 博客(13)
- 收藏
- 关注
原创 随机梯度下降法
import numpy as npfrom mpl_toolkits.mplot3d import Axes3Dimport matplotlib.pyplot as pltalpha = 0.01a0 = np.random.uniform(0, 1)a1 = np.random.uniform(0, 1)a2 = np.random.uniform(0, 1)a = np.array([a1, a2])eps = 1e-4e0 = 1e1 = 1e2 = 1x = np.
2021-11-12 09:30:26
1151
原创 强化学习——Actor Critic Method
import gym, osfrom itertools import countimport paddleimport paddle.nn as nnimport paddle.optimizer as optimimport paddle.nn.functional as Ffrom paddle.distribution import Categoricalprint(paddle.__version__)device = paddle.get_device()env = gy.
2021-10-21 17:01:55
115
原创 paddlepaddle识别手写体训练
import paddlefrom paddle.nn import Linearimport paddle.nn.functional as Fimport osimport numpy as npimport matplotlib.pyplot as plt# train_dataset = paddle.vision.datasets.MNIST(mode='train')## train_data0 = np.array(train_dataset[0][0])# train_.
2021-10-19 19:46:48
260
1
原创 主成分分析(PCA)原理
import numpy as npimport mathx = np.array([2.5, 0.5, 2.2, 1.9, 3.1, 2.3, 2, 1, 1.5, 1.1])y = np.array([2.4, 0.7, 2.9, 2.2, 3.0, 2.7, 1.6, 1.1, 1.6, 0.9])ax = x.mean()ay = y.mean()xx = np.empty(10)yy = np.empty(10)for i in range(0, 10): xx[i] =.
2021-10-07 17:31:08
76
原创 梯度下降法
import numpy as npimport matplotlib.pyplot as pltx=0y=1Y=1xx=np.zeros(100)yy=np.zeros(100)i=0for i in range(100): x=x+0.01 y=y+Y Y=y-(2*x/y) print(x,y) xx[i] = x yy[i] = yplt.plot(xx,yy)结果0.01 20.02 3.990.03 7.969.
2021-09-24 14:10:01
81
原创 欧拉公式推导
import numpy as npimport matplotlib.pyplot as pltx=0y=1Y=1xx=np.zeros(100)yy=np.zeros(100)i=0for i in range(100): x=x+0.01 y=y+Y Y=y-(2*x/y) print(x,y) xx[i] = x yy[i] = yplt.plot(xx,yy)0.01 20.02 3.990.03 7.9699749.
2021-09-17 09:04:47
294
原创 机器学习---感知器
代码import numpy as npimport mathx = np.array([[0,0],[0,1],[1,0],[1,1]])y = np.array([0,1,1,1])alpha = 0.1w0 = np.random.random()w1 = np.random.random()w2 = np.random.random()w = np.array([w1,w2])eps = 1e-4e0 = 2e1 = 2e2 = 2i = 0while e0
2021-09-10 09:35:45
75
原创 监督学习算法基础
监督学习----梯度下降法import numpy as npimport matplotlib.pyplot as pltx = np.array([[2104,3],[1600,3],[2400,3],[1416,2],[3000,4]])t = np.array([400,336,369,232,540])alpha = 0.1a0 = np.random.random()a1 = np.random.random()a2 = np.random.random()a =np.ar
2021-09-03 17:14:00
104
原创 numpy入门-----广播机制
广播机制import numpy as npdata1 = np.array([1,2,3])data2 = np.array([1,2])print(data1,data2)[1 2 3] [1 2]加减乘除 1 1 + 1 2data1:[ 2 ] +(-,*,/) data2:[ 1] = [ 2 + 1 ] = [ 3 ]
2021-09-01 22:17:04
81
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人