单层感知器

本文通过Python代码展示了如何使用感知机算法进行简单的二分类任务。首先定义了训练数据集及对应的标签,然后通过随机初始化权重向量并不断更新权重来找到能够正确划分数据集的超平面。最终绘制出了决策边界及数据分布图。
import numpy as np
import matplotlib.pyplot as plt
X=np.array([[1,3,3],[1,4,3],[1,1,1]])
Y=np.array([1,1,-1])
W=(np.random.random(3)-0.5)*2
print(W)
lr=0.11
n=0
O=0

def update():
    global X,Y,W,lr,n
    n+=1
    O=np.sign(np.dot(X,W.T))
    W_C=lr*((Y-O.T).dot(X))/int(X.shape[0])
    W=W+W_C 
    for _ in range(100):
    update()
    print(W)
    print(n)
    O=np.sign(np.dot(X,W.T))
    if(O==Y.T).all():
        print('finished')
        print('epoch:',n)
        break
        
x1=[3,4]
y1=[3,3]
x2=[1]
y2=[1]

k=-W[1]/W[2]
d=-W[0]/W[2]
print('k=',k)
print('d=',d)
xdata=np.linspace(0,5)
plt.figure()
plt.plot(xdata,xdata*k+d,'r')
plt.plot(x1,y1,'bo')
plt.plot(x2,y2,'yo')
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值