自测代码(写出斐波那契数列前20项)-2021-7-17

本文通过Java代码展示了如何生成斐波那契数列的前20项,并使用了简单的迭代方法来实现这一过程。代码易于理解,适合初学者学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写出斐波那契数列前20项

package com.qianfeng.weekendDay01;

public class WeekendWork05 {
	public static void main(String[] args) {
		int number1 = 1,number2 = 1;
		int transfers;		//储存中转数
		
		System.out.print(number1 + "\t" + number2 + "\t");
		
		for (int i = 3; i <= 20; i++) {
			transfers = number1;
			number1 = number1 + number2;
			number2 = transfers;
			System.out.print(number1 + "\t");
			if(i % 5 == 0) {
				System.out.println();
			}
		}
	}

}

<think>嗯,用户让我输出斐波那契列的前50。首先,我得确认斐波那契列的定义,通常是从0和1开始,后面每一都是前两之和。不过有时候会从1和1开始,所以可能需要确认一下用户的需求,但一般来说,编程题里常见的应该是从0开始的。 接下来要考虑的是如何高效生成前50。递归方法肯定不行,因为递归的时间复杂度太高,计算到第50会非常慢。应该用迭代的方法,或者更高效的方式。比如用循环来逐个计算每一,保存前两的值,这样时间复杂度是线性的,O(n),应该没问题。 然后,用户可能关心的是代码的简洁性和效率。Python的话,可以用生成器或者列表来存储结果。不过生成前50,用列表可能更直观。另外,处理大的问题,斐波那契列增长很快,第50已经很大了,但Python的整可以处理很大的,不用担心溢出。 然后,代码结构方面。可能需要初始化前两个,然后循环从第三开始计算,直到第50。注意循环的次,比如前两已经有了,循环48次就够了,因为总共要50。或者用range的参来控制次,比如range(2, 50)然后计算到索引49。 另外,输出格式可能需要每个用逗号分隔,或者换行显示。但用户只是要求输出前50,可能不需要特别的格式化,直接打印列表即可。不过如果太多,直接打印全部可能会显示不全,可以考虑循环打印每一。 还有考虑代码的简洁性,比如用元组赋值来更新a和b的值,避免使用临时变量。例如a, b = b, a + b,这样写既简洁又高效。 可能还需要测试一下代码是否正确,比如前几是否正确,0,1,1,2,3,5等等。另外检查循环次是否正确,是否生成了正好50。 用户有没有其他需求呢?比如内存使用,生成50的话,用列表存储没问题,内存占用不大。或者是否需要考虑空间复杂度,但50对于现代计算机来说微不足道。 有没有更Pythonic的写法?比如使用列表推导式,不过因为每一都依赖前两,列表推导式可能不太方便,还是用循环更直接。 最后,可能需要给用户解释一下代码的思路,以及斐波那契列的特性,比如指级增长,或者应用场景,但用户可能只需要代码和简要说明。所以回答的结构应该是先给出代码,然后解释原理,可能还有注意事,比如从0开始等。 检查一下代码有没有错误,比如初始是否正确,循环次是否正确,是否生成了50个元素。例如,初始化列表为[0,1],然后循环48次,添加48个元素,总共50个。或者使用动态计算,每次计算下一并添加到列表,直到长度达到50。 可能还需要考虑用户是否希望从0开始,比如前两是0和1,还是1和1。如果用户没有特别说明,可能需要注明,这里采用的是从0和1开始的版本。 总结下来,代码应该用循环迭代生成,确保高效和正确,输出前50,并且解释清楚实现方法和注意事。</think>**Python极简实现(时间复杂度$O(n)$):** ```python a, b = 0, 1 for _ in range(50): print(a, end=' ') a, b = b, a + b ``` **原理说明:** 1. 使用元组解包操`a, b = b, a+b`同步更新列 2. 直接输出避免存储全部据(内存占用$O(1)$) 3. 循环50次输出前50 **学特性补充:** - 第50值为$F(49)=7,778,742,049$(从$F(0)=0$开始计-公式:$F(n)=\frac{\phi^n-\psi^n}{\sqrt{5}}$,其中$\phi=\frac{1+\sqrt{5}}{2}$(黄金分割比) **内存优化版(生成器实现):** ```python def fib(): a, b = 0, 1 while True: yield a a, b = b, a + b print(*[next(fib()) for _ in range(50)]) ``` **注意事:** 1. 列增长速度符合指增长$O(\phi^n)$ 2. 第50值超过$7\times10^9$,若使用32位整型会溢出 3. Python自动支持大整运算,无需特殊处理
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值