poj 1894 Alternative Scale of Notation

Alternative Scale of Notation
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions:2182 Accepted: 808

Description

One may define a map of strings over an alphabet ΣB = { C1, C2, . . . CB } of size B to non-negative integer numbers, using characters as digits C1 = 0, C2 = 1, . . . , CB = B - 1 and interpreting the string as the representation of some number in a scale of notation with base B. Let us denote this map by UB , for a string α[ 1...n ] of length n we put 
UB(α)=Σ0<=i<=n-1α[n-i]*Bi

For example, U3(1001) = 1*27 + 0*9 + 0*3 + 1*1 = 28. 

However, this correspondence has one major drawback: it is not ont-to-one. For example, 
28 = U3(1001) = U3(01001) = U3(001001) = ... , 
infinitely many strings map to the number 28. 

In mathematical logic and computer science this may be unacceptable. To overcome this problem, the alternative interpretation is used. Let us interpret characters as digits, but in a slightly different way: C1 = 1, C2 = 2, . . . , CB = B . Note that now we do not have 0 digit, but rather we have a rudiment B digit. Now we define the map VB in a similar way, for each string α[ 1...n ] of length n we put 
VB(α)=Σ0<=i<=n-1α[n-i]*Bi

For an empty string ε we put VB(ε) = 0. 

This map looks very much like UB , however, the set of digits is now different. So, for example, we have V3(1313) = 1*27 + 3*9 + 1*3 + 3*1 = 60. 

It can be easily proved that the correspondence defined by this map is one-to-one and onto. Such a map is called bijective, and it is well known that every bijective map has an inverse. Your task in this problem is to compute the inverse for the map VB . That is, for a given integer number x you have to find the string α, such that VB(α) = x. 

Input

The first line contains B (2 <= B <= 9) and the second line contains an integer number x given in a usual decimal scale of notation, 0 <= x <= 10100.

Output

Output in one line such string α, consisting only of digits from the set { 1, 2, . . . , B }, that VB(α) = x . 

Sample Input

3
60

Sample Output

1313

Source


import java.io.*;
import java.math.BigInteger;
import java.nio.Buffer;
import java.util.*;
public class Main
{
    public static void main(String args[]) throws Exception
    {
        Scanner cin=new Scanner(System.in);
        BigInteger n=cin.nextBigInteger();
        BigInteger a=cin.nextBigInteger();
        BigInteger x=BigInteger.valueOf(0);
        String s="";
        while (a.compareTo(BigInteger.valueOf(0))>0){
            if(a.remainder(n).equals(BigInteger.valueOf(0))){
                s+=n.toString();
                a=a.subtract(n);
                a=a.divide(n);
            }
            else{
                s+=a.remainder(n).toString();
                a=a.divide(n);
            }

        }

        s = new StringBuffer(s).reverse().toString();
        System.out.print(s);

    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值