Wormholes POJ - 3259

本文介绍了一个有趣的编程问题:如何通过特定的路径和虫洞让农夫约翰实现时间旅行回到过去。该问题通过Bellman-Ford算法解决,判断是否存在负权回路使起点到终点的时间为负。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input
Line 1: A single integer, FF farm descriptions follow. 
Line 1 of each farm: Three space-separated integers respectively: NM, and W 
Lines 2.. M+1 of each farm: Three space-separated numbers ( SET) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path. 
Lines M+2.. MW+1 of each farm: Three space-separated numbers ( SET) that describe, respectively: A one way path from S to E that also moves the traveler backT seconds.
Output
Lines 1.. F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).
Sample Input
2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8
Sample Output
NO
YES
Hint
For farm 1, FJ cannot travel back in time. 
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.


Bellman-ford负权回路,一开始没把双虫洞看成双向

边,改完后数组忘了扩大,唉。


#include <iostream>
#include <cstdio>

using namespace std;

typedef long long ll;

const int M=6000+5;
const int INF=100000;

int from[M];
int to[M];
int cost[M];
int dis[M];

void solve(){
    int f;
    cin>>f;
    while(f--){
        int n,m,w;
        cin>>n>>m>>w;

        for(int i=1;i<=2*m;i+=2){
            int x,y,z;
            cin>>x>>y>>z;
            from[i]=x;
            to[i]=y;
            cost[i]=z;

            from[i+1]=y;
            to[i+1]=x;
            cost[i+1]=z;
        }
        for(int i=1;i<=w;i++){
            int x,y,z;
            cin>>x>>y>>z;
            from[i+2*m]=x;
            to[i+2*m]=y;
            cost[i+2*m]=-z;
        }

        for(int i=1;i<=n;i++){
            dis[i]=INF;
        }
        dis[1]=0;

        bool ff;
        for(int k=1;k<n;k++){
            ff=1;
            for(int i=1;i<=2*m+w;i++){
                if(dis[to[i]]>dis[from[i]]+cost[i]){
                    dis[to[i]]=dis[from[i]]+cost[i];
                    ff=0;
                }
            }
            if(ff)break;
        }

        bool flag=0;
        for(int i=1;i<=2*m+w;i++){
            if(dis[to[i]]>dis[from[i]]+cost[i]){
                flag=1;
            }
        }
        if(flag==1){
            cout<<"YES"<<endl;
        }
        else{
            cout<<"NO"<<endl;
        }

    }

}

int main(){
    solve();
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值