搜索引擎,上网的人基本上都不陌生了,CNNIC的第17次《互联网调查报告》显示,使用搜索引擎服务的网民,仅次于电子邮件。中文分词,估计了解的人并不多,毕竟太技术,太底层。但中文分词是中文搜索引擎系统中非常重要的模块,这里之所以强调是中文搜索引擎,是针对英文搜索引擎来讲,因为对于英文来说,空格代表词和词之间的分隔,也就不存在分词问题。和中文搜索引擎类似还有日文、韩文、泰文搜索引擎等,都需要处理分词问题。
为什么需要中文分词
目前的搜索引擎,大多是基于一种称为倒排索引的结构[1]。以什么做为索引的Key值,直接影响到整个搜索引擎的准确度、召回率[2]、速度。我们先看看不使用中文分词的情况。
如果不使用中文分词,可以采用单个汉字索引方式。例如,雅虎,先索引'雅'字,然后再索引'虎'字。同样,对于一篇文章,先把所有的汉字都单独索引一次,并记录他们的位置。搜索过程中,也是先找'雅'字的所有文档,再找'虎'字的所有文档,然后做交叉'与'运算,即包含这两个字,而且位置连续的文档才会做为符合要求的结果。这种方式是最基本的索引方式,现在有些小引擎中还在使用。但这里存在一个很有挑战性的问题:总共的常用汉字是3000多个,我们每次查询过程中,进行'与'操作的计算量会相当大,对于大数据量搜索引擎来说(超过10亿的文档),每天上亿次查询,这样的索引结构,无疑是对硬件和算法的极大挑战。
考虑到速度问题,如果不使用分词,还有另外一种选择:n元组合索引方式,2元/3元等。拿2元来说,中国人,先索引'中国', 再索引'国人'。同样,对于一篇文章,以2为单位,把所有相邻的汉字都索引起来,并记录他们的位置。搜索过程中,也是先找包含'中国'的所有文档,再找'国人'的所有文档,然后做交叉'与'运算,即包含这两个单元,而且位置连续的文档才会做为符合要求的结果。这样以两个字做为索引单元,可以大大减少在搜索过程中的计算量。
以上两种方式,都可以不需要分词,也能实现搜索引擎的索引和搜索。但是这里存在一个不可忽视的问题:准确度。一个很常见的例子:和服,如果按照上面两种方式,都会查到包含'主板 和服 务器'的文档; 北大 也会得到'东 北大 学'。对于大数据量的搜索引擎来说,每个搜索次都会有成千上万个结果,用户已经很挑选他真正想要的文章,如果这里还要增加许多错误,估计用户体验会极差。这时候,我们需要中文分词。
词,是中文语言中最小的语意单位。以词为单位做为搜索引擎的索引的Key值,会大大提高搜索引擎结果的准确性,同时保证了搜索过程中计算量小。其实还有一个优点,以词为单位的索引,索引库会比上两种方式小很多。很明显:如果以 中国人 做为一个词,那么搜索的时候,不需要任何'与'运算,索引的时候记录也会减少。关于搜索过程描述参看中文搜索引擎技术揭密:系统架构
中文分词技术的研究,已经有几十年的历史了,在20世纪80年代,我国就有人开始研究如何用计算机来自动分词。如何让机器去识别语言中最小的语意单位,不是一件很容易的事情。
如何进行分词?对于程序员来说,最容易想到的办法是,用一个大词典,把所有的词都存入词典中,扫描输入的文本,查找所有可能的词,然后看哪个词可以做为输出。例如:
输入文本: 我是学生
词: 我/是/学生
其实这样做了以后,可以解决60%的问题。总结起来,分词的算法分为:
1. 基于字符串匹配的分词方法
2. 基于理解的分词方法
3. 基于统计的分词方法
关于这3种算法的详细介绍,可以查看中文分词技术,我这里想介绍的是,如何处理新词。
新词,术语是"未登录词",就是那些没有收入到词典里面的词。新词主要包括:人名、地名、机构名、热点新名词等。例如:2003年之前,没有人知道"非典"。"非典"刚出现的时候,这就是新词。还有"超女", "三个代表","芙蓉姐姐"。识别新词的能力是评估一个分词系统的重要指标。在国际上每年进行的分词大赛中,识别新词的比赛也单独提出。2006年SIGHAN的分词大赛中,就增添了对于机构名识别的比赛。
如何识别新词成为最近几年分词技术研究的重点。总结起来,无非分成两种:
1. 基于规则的方法。
2. 基于统计、机器学习。
拿人名识别为例。你不可能把所有的人名都放入词典中,这决定了人名注定会是新词。从人名构造来说,很有规律:姓+名。张王刘李陈、天下一半人。也就是说可能有一半的人,是这五个姓。名也有一定规律:建华/建国/志强.....等有许多经常用于名字中的汉字;对于地名识别也可以找出很多规则,省/县/村/镇/湾/河等,都是很常用的后缀,如果他们出现,之前出现地名的可能性比较大。如果把这些规律转化成计算机能识别的算法,就是基于规则的算法。这种基于规则的算法简单有效,而且发现规则可很方便加入。
规则总会有例外,规则过多以后,如何去权衡这些规则,会是十分头疼的问题。人们试着告诉计算机目标,让计算机自己去尝试各种方法组合这些规则并得到最优参数,这就机器学习。随着Machine Learning(机器学习)技术的不断进步,其应用范围也越来越广,中文分词算法也从中受益。ANN(人工神经网络), 最大熵模型, HMM(隐马尔可夫模型)等算法都在新词识别中有应用。通过机器学习识别新词的原理并不复杂。一般都是先定义一些特征,然后利用训练语料进行学习,建立模型。还是以人名识别为例,可以定义姓名前面的字、姓、名、姓名后面的字做为特征,通过利用标注好姓名的语料库进行学习训练。
机器学习识别新词的好处在于自动寻找一些识别新词的特征,其准确度和召回率都能达到比较高的水平。但机器学习算法需要有足够多的训练语料,人工准备准确的大规模的训练语料也会十分困难。另外,机器学习算法一般速度会比较慢,优化速度,使之用于海量数据处理,也是使用机器学习的一个关键点。