# -*- coding: utf-8 -*-
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
from sklearn import tree
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import classification_report
from sklearn.cross_validation import train_test_split
plt.switch_backend('agg')
# 数据读入
data = []
labels = []
with open("file_fac_abe.txt") as ifile:
for line in ifile:
tokens = line.strip().split(',')
#print('tokens:',tokens)
data.append([int(tk) for tk in tokens[:-1]])
labels.append(tokens[-1])
x = np.array(data)
labels = np.array(labels)
y = np.zeros(labels.shape)
print('x:',x)
print(len(x))
print('labels:',labels)
print(len(labels))
print('y:',y)
print(len(y))
#标签转换为0/1
y[labels=='LCS']=1
print('y:',y)
#拆分训练数据与测试数据
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2,random_state=0)
'''
print('x_train:',x_train)
print(len(x_train))
print('x_test:',x_test)
print(len(x_test))
print
机器学习之决策树----python实现
最新推荐文章于 2023-08-07 07:30:00 发布