第二次上课的作业之一是实现所有会的排序算法(之二是实现查找欧拉回路的算法),用了总计大概两天的时间写好了这九个排序算法。没有一个算法是一次通过的,都经过了调试,甚至冒泡,而且后来才发现我第一次写的冒泡程序竟然是错误的,囧。 这还是第一次把这些算法全部亲手实现,收获还是很大的,真的加深了理解。期待通过这门课有效地提高自己的编程能力。 废话不说,上代码。 以下算法,没给出参数的默认排序范围为data[]的第0位到第N位。有些采用分治思想的算法需要范围参数,如快排和归并。 为了优化,在递归过程中如果待排序长度较短则使用插入排序代替递归,因此插入排序函数有一个带参数版本为此所用。桶排序需要一个算法实现桶内排序,这里选择了快排,因此快排有一个带三个参数的重载版本。 另外堆排序的实现用了一个类加一个外部函数。 genData函数用于生成随机数据; check函数用于检查数据是否有序; exchange函数用于交换两个数据; show函数用于打印; digit函数返回数据的某一位(用于基数排序);
0.其它函数
#include
#include
#include
using namespace std;
#define N 10000000
#define MAX 100000
int data[N];
void genData() //~generate data
{
srand((unsigned)time(NULL));
for(int i = 0;i < N;i++)
{
data[i] = rand()%MAX;
}
}
void show() //~show the data sequentially
{
for(int i = 0;i < N;i++)
cout<<<"/t";
cout<<= j;k++)
cout<<<"/t";
cout<< N-1;i++)
{
if(data[i] > data[i+1])
{
cout<<"unsorted!"<<<"sorted!"<
1.冒泡排序
void BubbleSort()
{
int t;
for(int i = N-1;i > 0;i--)
{
for(int j = 0;j < i;j++)
{
if(data[j] > data[i])
{
t = data[i];
data[i] = data[j];
data[j] = t;
}
}
}
}
2.插入排序
void InsertionSort(int l,int r)
{
int t;
int pos = l+1; //pos as the beginning of the unsorted area
for(int i = pos;i <= r;i++)
{
t = data[i];
int j;
for(j = i - 1;j >= l && data[j] > t;j--)
{
data[j+1] = data[j];
}
data[j+1] = t;
}
}
void InsertionSort()
{
int t;
int pos = 1; //pos as the beginning of the unsorted area
for(int i = pos;i < N;i++)
{
t = data[i];
int j;
for(j = i - 1;j >= 0 && data[j] > t;j--)
{
data[j+1] = data[j];
}
data[j+1] = t;
}
}
3.选择排序
void SelectionSort()
{
int t;
int pos = 0,min = MAX + 1;
for(int i = 0;i < N;i++)
{
min = MAX + 1;
for(int j = i;j < N;j++)
{
if(data[j] < min)
{
pos = j;
min = data[j];
}
}
exchange(pos,i);
}
}
4.快速排序
void QuickSort(int l,int r,int* data) //this version of QuickSort is for BucketSort's use
{
int length = r-l+1;
// when length <= 20,use InsertionSort instead.
/*if(length <= 20)
{
InsertionSort(l,r);
return;
}*/
if(length <= 1)
return;
int pos = rand()%(r - l + 1) + l;
exchange(l,pos,data);
int i = l+1,j = r;
while(i <= j)
{
while(data[i] <= data[l] && i <= r)
i++;
while(data[j] >= data[l] && j >= l+1)
j--;
if(i < j)
exchange(i,j,data);
}
exchange(l,j,data);
QuickSort(l,j-1,data);
QuickSort(j+1,r,data);
}
void QuickSort(int l,int r)
{
int length = r-l+1;
// when length <= 20,use InsertionSort instead.
if(length <= 20)
{
InsertionSort(l,r);
return;
}
int pos = rand()%(r - l + 1) + l;
exchange(l,pos);
int i = l+1,j = r;
while(i <= j)
{
while(data[i] <= data[l] && i <= r)
i++;
while(data[j] >= data[l] && j >= l+1)
j--;
if(i < j)
exchange(i,j);
}
exchange(l,j);
QuickSort(l,j-1);
QuickSort(j+1,r);
}
5.堆排序
class Heap
{
//1 for root
//for each node i,2*i is its left child,2*i+1 is its right child
public:
Heap(int n):m_MaxSize(n),m_NumOfData(0)
{
m_pData = new int[m_MaxSize + 1];
};
~Heap()
{
delete m_pData;
}
void exchange(int i,int j)
{
int t = m_pData[i];
m_pData[i] = m_pData[j];
m_pData[j] = t;
}
void insert(int NewData)
{
if(m_NumOfData >= m_MaxSize)
{
cout<<"full! can not insert!"< 0 && m_pData[cur] < m_pData[(int)(cur/2)])
{
exchange(cur,(int)(cur/2));
cur = (int)(cur/2);
}
}
int deleteNode()
{
int cur = 1;
int result = m_pData[cur];
m_pData[cur] = m_pData[m_MaxSize--];
while(cur <= m_MaxSize)
{
if(cur*2 > m_MaxSize)
break;
else if(cur*2+1 > m_MaxSize)
{
if(m_pData[cur] > m_pData[2*cur])
exchange(cur,2*cur);
break;
}
else if(m_pData[cur] < m_pData[cur*2] && m_pData[cur] < m_pData[cur*2+1])
break;
else if(m_pData[2*cur] > m_pData[2*cur+1])
{
exchange(cur,2*cur+1);
cur = 2*cur+1;
}
else
{
exchange(cur,2*cur);
cur = 2*cur;
}
}
return result;
}
void Print()
{
cout<<"Print:"<<= m_MaxSize;i++)
cout<<<"/t";
cout<< N;i++)
{
h.insert(data[i]);
}
for(int i = 0;i < N;i++)
{
data[i] = h.deleteNode();
}
}
6.归并排序
void MergeSort(int l,int r)
{
int length = r - l + 1;
// when length <= 20,use InsertionSort instead.
if(length <= 20)
{
InsertionSort(l,r);
return;
}
/*
if(length <= 1)
return;
*/
else
{
MergeSort(l,l+length/2-1);
MergeSort(l+length/2,r);
}
int* tempBuf = new int[r-l+1];
int pos_1 = l,pos_2 = l+length/2;
int i;
for(i = 0;i < length && pos_1 <= l+length/2-1 && pos_2 <= r;i++)
{
if(data[pos_1] < data[pos_2])
{
tempBuf[i] = data[pos_1++];
}
else
{
tempBuf[i] = data[pos_2++];
}
}
while(pos_1 <= l+length/2-1)
{
tempBuf[i++] = data[pos_1++];
}
while(pos_2 <= r)
{
tempBuf[i++] = data[pos_2++];
}
for(int i = l;i <= r;i++)
{
data[i] = tempBuf[i-l];
}
delete tempBuf;
}
7.计数排序
void CountingSort()
{
int* b = new int[N];
int* c = new int[MAX+1];
for(int i = 0;i <= MAX;i++)
c[i] = 0;
for(int i = 0;i < N;i++)
c[data[i]]++;
for(int i = 1;i <= MAX;i++)
c[i] += c[i-1];
for(int i = N-1;i >= 0;i--)
{
b[c[data[i]]-1] = data[i];
c[data[i]]--;
}
for(int i = 0;i < N;i++)
data[i] = b[i];
delete b;
delete c;
}
8.桶排序
void CountingSort()
{
int* b = new int[N];
int* c = new int[MAX+1];
for(int i = 0;i <= MAX;i++)
c[i] = 0;
for(int i = 0;i < N;i++)
c[data[i]]++;
for(int i = 1;i <= MAX;i++)
c[i] += c[i-1];
for(int i = N-1;i >= 0;i--)
{
b[c[data[i]]-1] = data[i];
c[data[i]]--;
}
for(int i = 0;i < N;i++)
data[i] = b[i];
delete b;
delete c;
}
9.基数排序
int digit(int data,int i) //return the ith digit of data,from right to left is 0,1,2...
{
while(i>0)
{
data /= 10;
i--;
}
return data % 10;
}
void RadixSort()
{
int digits = 0;
int max = MAX;
while(max != 1)
{
max /= 10;
digits++;
}
int** pData = new int*[10];
int len[10];
for(int i = 0;i < 10;i++)
{
pData[i] = new int[N];
//len[i] = 0;
}
for(int i = 0;i < digits;i++)
{
for(int j = 0;j < 10;j++)
len[j] = 0;
for(int j = 0;j < N;j++)
{
pData[digit(data[j],i)][len[digit(data[j],i)]++] = data[j];
}
//system("PAUSE");
int pos = 0;
for(int j = 0;j < 10;j++)
{
for(int k = 0;k < len[j];k++)
{
data[pos++] = pData[j][k];
}
}
}
}
int main(int argc, char *argv[])
{
LARGE_INTEGER BegainTime;
LARGE_INTEGER EndTime;
LARGE_INTEGER Frequency;
int TotalTime = 0;
//sort M groups of data and calculate the average run time
for(int i = 1;i <= M;i++)
{
genData(i);
//check();
QueryPerformanceFrequency(&Frequency);
QueryPerformanceCounter(&BegainTime);
//BubbleSort();
//InsertionSort();
//SelectionSort();
//QuickSort(0,N-1);
//HeapSort();
//MergeSort(0,N-1);
//CountingSort();
//BucketSort();
RadixSort();
QueryPerformanceCounter(&EndTime);
//cout<<"run time : "<<(EndTime.QuadPart - BegainTime.QuadPart)*1000/Frequency.QuadPart<<" MS."<<<"Average run time : "<<<" MS."<<<"run time : "<<( EndTime.QuadPart - BegainTime.QuadPart )*1000 / Frequency.QuadPart<<"MS."<
函数名 |10^5 |10^6 |10^7 |
| | | |
BubbleSort |17751 | | |
InsertionSort |11037 | | |
SelectionSort |14616 | | |
QuickSort | 19 |297 | 7808 |
HeapSort | 54 |981 | 15307 |
MergeSort | 30 |397 | 4211 |
BucketSort | 28 |427 | 645 |
CountingSort | 3 | 69 |out of mem |
RadixSort | 28 |313 |out of mem |

被折叠的 条评论
为什么被折叠?



