此错误信息表明你当前使用的PyTorch版本并未编译以支持CUDA。这通常意味着你可能安装了CPU-only版本的PyTorch,或者你的PyTorch版本与CUDA版本不兼容。
为了解决这个问题,请按照以下步骤操作:
-
卸载当前的PyTorch:
使用pip或conda根据你的安装方式来卸载PyTorch。- 如果你是使用pip安装的,可以通过运行
pip uninstall torch torchvision torchaudio来卸载。 - 如果你是使用conda安装的,可以通过运行
conda remove pytorch torchvision torchaudio cudatoolkit来卸载。
- 如果你是使用pip安装的,可以通过运行
-
重新安装支持CUDA的PyTorch版本:
前往PyTorch官网,根据你的系统环境(操作系统、CUDA版本等)选择合适的安装命令。例如,如果你的CUDA版本是11.3,可以使用以下命令通过pip重新安装PyTorch:pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113或者,如果你使用conda,可以找到相应的命令来安装匹配你CUDA版本的PyTorch,例如:
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch注意:确保
cudatoolkit的版本与你系统中安装的CUDA版本相匹配。 -
验证CUDA支持:
安装完成后,重新运行以下代码来验证PyTorch是否能够识别CUDA设备:import torch print(torch.cuda.is_available()) # 应该返回True print(torch.cuda.device_count()) # 显示可用的CUDA设备数量 print(torch.cuda.get_device_name(0)) # 显示第一个CUDA设备的名称这次应该能够看到预期的结果,表明CUDA已经被PyTorch正确识别和支持。
通过上述步骤,你应该能够解决“Torch not compiled with CUDA enabled”的问题,并使PyTorch能够利用GPU加速你的计算任务。
本文介绍了如何处理PyTorch版本不支持CUDA的问题,包括卸载现有版本、根据CUDA版本重新安装PyTorch,以及验证安装后的CUDA支持情况,以实现GPU加速计算任务。
5098

被折叠的 条评论
为什么被折叠?



