import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
(x,y),_ = datasets.mnist.load_data()
x = tf.convert_to_tensor(x,dtype=tf.float32)/255.0
y = tf.convert_to_tensor(y,dtype=tf.int32)
# print(x.shape,y.shape,x.dtype,y.dtype)
# print(tf.reduce_min(x),tf.reduce_max(x))
# print(tf.reduce_min(y),tf.reduce_max(y))
# sample&batch
train_db = tf.data.Dataset.from_tensor_slices((x,y)).batch(128)
train_iter = iter(train_db)
sample = next(train_iter)
# print('batch:', sample[0].shape, sample[1].shape)
# 784 -> 256 -> 128 -> 10
w1 = tf.Variable(tf.random.truncated_normal([784,256],stddev=0.1))
b1 = tf.Variable(tf.zeros([256]))
w2 = tf.Variable(tf.random.truncated_normal([256,128],stddev=0.1))
b2 = tf.Variable(tf.zeros([128]))
w3 = tf.Variable(tf.random.truncated_normal([128,10],stddev=0.1))
b3 = tf.Variable(tf.zeros([10]))
lr = 0.0005
for i in range(10):
for step,(x,y) in enumerate(train_db):
x = tf.reshape(x, [-1, 28*28])
with tf.GradientTape() as tape:
h1 = x@w1 + b1
h1 = tf.nn.relu(h1)
h2 = h1@w2 + b2
h2 = tf.nn.relu(h2)
out = h2@w3 + b3
#loss
y_onehot = tf.one_hot(y, depth = 10)
loss = tf.square(y_onehot-out)
loss = tf.reduce_mean(loss)
#compute gradient
#Warning: all varables in the computing process must be packed by tf.Variable
grad = tape.gradient(loss, [w1,b1,w2,b2,w3,b3])
w1 = w1 - lr*grad[0]
w1 = tf.Variable(w1)
b1 = b1 - lr*grad[1]
b1 = tf.Variable(b1)
w2 = w2 - lr*grad[2]
w2 = tf.Variable(w2)
b2 = b2 - lr*grad[3]
b2 = tf.Variable(b2)
w3 = w3 - lr*grad[4]
w3 = tf.Variable(w3)
b3 = b3 - lr*grad[5]
b3 = tf.Variable(b3)
if step%200 == 0:
print(i,step, 'loss', float(loss))
第一个神经网络
TensorFlow与Python构建神经网络
最新推荐文章于 2025-05-28 11:55:19 发布
博客围绕TensorFlow和Python在神经网络构建方面展开。TensorFlow是强大的深度学习框架,Python是常用编程语言,二者结合可高效实现神经网络相关任务,助力开发者进行模型训练与应用。
部署运行你感兴趣的模型镜像
您可能感兴趣的与本文相关的镜像
TensorFlow-v2.15
TensorFlow
TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型
9万+

被折叠的 条评论
为什么被折叠?



