【特征工程】(未完成)特征选择

本文探讨了特征工程中的特征选择问题,介绍了多种特征选择方法,包括计算相关性、使用单个特征构建模型、利用L1正则化、训练预选模型进行特征评分、特征组合以及深度学习方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【特征工程】(未完成)特征选择

特征选择
特征选择是特征工程中的重要问题(另一个重要的问题是特征提取),坊间常说:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。由此可见,特征工程尤其是特征选择在机器学习中占有相当重要的地位。通常而言,特征选择是指选择获得相应模型和算法最好性能的特征集,工程上常用的方法有以下:

  1. 计算每一个特征与响应变量的相关性:工程上常用的手段有计算皮尔逊系数和互信息系数,皮尔逊系数只能衡量线性相关性而互信息系数能够很好地度量各种相关性,但是计算相对复杂一些,好在很多toolkit里边都包含了这个工具(如sklearn的MINE),得到相关性之后就可以排序选择特征了;
  2. 构建单个特征的模型,通过模型的准确性为特征排序,借此来选择特征,另外,记得JMLR’03上有一篇论文介绍了一种基于决策树的特征选择方法,本质上是等价的。当选择到了目标特征之后,再用来训练最终的模型;
  3. 通过L1正则项来选择特征:L1正则方法具有稀疏解的特性,因此天然具备特征选择的特性,但是要注意,L1没有选到的特征不代表不重要,原因是两个具有高相关性的特征可能只保留了一个,如果要确定哪个特征重要应再通过L2正则方法交叉检验
  4. 训练能够对特征打分的预选模型:RandomForest和Logistic Regression等都能对模型的特征打分,通过打分获得相关性后再训练最终模型;
  5. 通过特征组合后再来选择特征:如对用户id和用户特征最组合来获得较大的特征集再来选择特征,这种做法在推荐系统和广告系统中比较常见,这也是所谓亿级甚至十亿级特征的主要来源,原因是用户数据比较稀疏,组合特征能够同时兼顾全局模型和个性化模型,这个问题有机会可以展开讲。
    6.通过深度学习来进行特征选择:目前这种手段正在随着深度学习的流行而成为一种手段,尤其是在计算机视觉领域,原因是深度学习具有自动学习特征的能力,这也是深度学习又叫unsupervised feature learning的原因。从深度学习模型中选择某一神经层的特征后就可以用来进行最终目标模型的训练了。

【参考】
作者:北冥有小鱼 原文:https://blog.youkuaiyun.com/qq_26598445/article/details/80998760

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值