From Preference Relation to Utility Function.

文章介绍了实值效用函数如何简化消费者理论中的偏好关系分析,强调了效用函数的连续性和不变性,以及边际效用和边际替代率的概念,通过实例说明了它们在商品组合比较中的应用。

From Preference Relation to Utility Function.

A real-valued utility function is then defined to represent the preference relation≿\succsim and thus simplifies the analysis of many problems in consumer theory.

It has been proved that any binary relation that is complete, transitive, and continuous can be represented by a continuous real-valued utility function.[Barten and Böhm (1982). The classic reference is Debreu (1954).]
请添加图片描述

u(x)e∼x u(\mathbf{x})\mathbf{e}\sim\mathbf{x} u(x)ex

Equation1 provides a method to explains how the utility function works to maintain the preference relation. For any x\mathbf{x}x, which is a bundle of commodities, a number (utility) is assigned to it and the homogenous bundles of commodities u(x)eu(\mathbf{x})\mathbf{e}u(x)e then can be compared with each other at a more easy basis.

请添加图片描述

Then, we can use u(x)u(\mathbf{x})u(x) in a single axis to represent the preference relation.
x1≿x2⟺u(x1)≥u(x2) \mathbf{x}^1\succsim\mathbf{x}^2\Longleftrightarrow u(\mathbf{x^1})\geq u(\mathbf{x}^2) x1x2u(x1)u(x2)

Concerning utility functions, they play the same function if they do the same ordering to the bundles of the commodities. People sometimes say the utility function is invariant to positive monotonic transform.

请添加图片描述

For a utility function, the Marginal Utility of good iii is the first-order derivative of u(x)u(\mathbf{x})u(x) with respect to xi\mathbf{x}_ixi.
MUxi=∂u(x)∂xi MU_{\mathbf{x_i}}=\frac{\partial u(\mathbf{x})}{\partial \mathbf{x_i}} MUxi=xiu(x)
Take the example of a bundle of two goods<x1,x2><x_1, x_2><x1,x2>, if set u(x)u(\mathbf{x})u(x) as a constant value ccc, that is u(x1,f(x1))=cu(x_1,f(x_1))=cu(x1,f(x1))=c, the line of x2=f(x1)x_2=f(x_1)x2=f(x1) in x1,x2x_1, x_2x1,x2 planes can be drawn and the line is what we call the indifference line.

And the marginal rate of substitution(MRS) is defined as:
MRS12(x11,x21)≡∣f′(x11)∣=−f′(x11) MRS_{12}(x_1^1,x_2^1)\equiv|f'(x_1^1)|=-f'(x_1^1) MRS12(x11,x21)f(x11)=f(x11)

As u(x1,f(x1))=cu(x_1,f(x_1))=cu(x1,f(x1))=c, its derivative with respect to x1x_1x1 must be 000.
∂u(x11,f(x11))∂x11+∂u(x11,f(x11))∂f(x11)f′(x11)=0 \frac{\partial u(x_1^1,f(x_1^1))}{\partial x_1^1}+\frac{\partial u(x_1^1,f(x_1^1))}{\partial f(x_1^1)}f'(x_1^1)=0 x11u(x11,f(x11))+f(x11)u(x11,f(x11))f(x11)=0
Combine the last two equations, we define the MRS as:
MRS12(x1)=∂u(x1)/∂x11∂u(x1)/∂x21 MRS_{12}(\mathbf{x}^1)=\frac{\partial u(\mathbf{x}^1)/\partial\mathbf{x_1^1}}{\partial u(\mathbf{x}^1)/\partial\mathbf{x_2^1}} MRS12(x1)=u(x1)/x21u(x1)/x11

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值