Consumer Theory-Primitive Notions, Preference Relations and categories.

本文介绍了消费理论中的四个基本概念,包括消费集、消费计划、效用函数、偏好关系及其性质(如完备性、传递性和区分严格偏好与无差异)。它详细阐述了如何基于这些概念理解消费者在满足约束条件下的决策过程。

Chapter1-Consumer Theory

Primitive Notions

4 building blocks in any model of consumer choice

  • consumption set, X:\mathbf{X}:X: SET, all alternatives or complete consumption plans.

    • X⊆R+n\mathbf{X}\subseteq \mathbb{R}_+^nXR+n, that is to say, set X\mathbf{X}X is a subset of the non-negative n-dimension set R\mathbb{R}R.

    在这里插入图片描述

    • X\mathbf{X}X is closed. A closed set is a set that contains all its limit points. This implies that the complement of the closed set is an open set.

在这里插入图片描述

  • X\mathbf{X}X is convex

    A set X\mathbf{X}X is convex if, for any two points within the set, the line segment connecting them is also contained within the set. Mathematically, this can be represented as:

    For any x,y∈Xx, y \in \mathbf{X}x,yX and any t∈[0,1],tx+(1−t)y∈Xt \in [0, 1], tx + (1 - t)y \in \mathbf{X}t[0,1],tx+(1t)yX.

在这里插入图片描述

  • 0∈X\mathbf{0}\in\mathbf{X}0X

x=(x1,...,xn),xi∈R,x∈X,x∈R+n:\mathbf{x}=(x_1,...,x_n),x_i\in \mathbb{R}, \mathbf{x} \in \mathbf{X},\mathbf{x} \in \mathbb{R}_+^n:x=(x1,...,xn),xiR,xX,xR+n: Vector, consumption bundle/plan

  • feasible set, B∈X\mathbf{B}\in \mathbf{X}BX

    • subset of the consumption set X\mathbf{X}X
    • satisfy the constraints
      在这里插入图片描述
  • preference relation,

    • represents the subjective ranking of options from the most preferred to the least preferred

    • The preference relation ≻\succ on a set X\mathbf{X}X is a binary relation that satisfies the following properties:

      Axiom1: Completeness: For any x1,x2∈X\mathbf{x^1}, \mathbf{x^2} \in \mathbf{X}x1,x2X, either x⪰yx \succeq yxy or y⪰xy \succeq xyx.

      Axiom2: Transitivity: For any x1,x2,x3,∈X\mathbf{x^1}, \mathbf{x^2},\mathbf{x^3}, \in \mathbf{X}x1,x2,x3,X, if x1⪰x2\mathbf{x^1} \succeq \mathbf{x^2}x1x2 and x2⪰x3\mathbf{x^2} \succeq \mathbf{x^3}x2x3, then x1⪰x3\mathbf{x^1} \succeq \mathbf{x^3}x1x3.

在这里插入图片描述

  • behavioural assumption

    • the consumer seeks to identify and select an available alternative that is most preferred in the light of his personal tastes.

Preference and Utility

preference relations

  • preference relation ⪰\succeq :

    A preference relation ⪰\succeq on a set X\mathbf{X}X is a binary relation that represents the way in which an individual ranks different alternatives or choices.

    • read as: is at least as good as
    • defined on the consumption set, X\mathbf{X}X.
    • If x1⪰x2x^1 \succeq x^2x1x2, we say that ‘x1x^1x1 is at least as good as x2x^2x2’, for this specific consumer.
    • It satisfies the following axioms:
      1. Completeness: For any x1,x2∈X\mathbf{x}^1, \mathbf{x}^2 \in \mathbf{X}x1,x2X, either x1⪰x2\mathbf{x}^1 \succeq \mathbf{x}^2x1x2 or x2⪰x1\mathbf{x}^2 \succeq \mathbf{x}^1x2x1 or both.
      2. Transitivity: For any x1,x2,x3∈X\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3 \in \mathbf{X}x1,x2,x3X, if x1⪰x2\mathbf{x}^1 \succeq \mathbf{x}^2x1x2 and x2⪰x3\mathbf{x}^2 \succeq \mathbf{x}^3x2x3, then x1⪰x3\mathbf{x}^1 \succeq \mathbf{x}^3x1x3.
  • strict preference relation ≻\succ

    A strict preference relation indicates that one option is strictly preferred over another, without considering them as equally desirable.

    • read as: is strictly preferred to
    • The relation x1≻x2x^1 \succ x^2x1x2 holds if and only if x1⪰x2x^1 \succeq x^2x1x2 and x2⪰̸x1x^2 \not\succeq x^1x2x1.
    • It satisfies the following axioms:
      1. Irreflexivity: No element is strictly preferred to itself, formally represented as x⊁xx \not\succ xxx.
      2. Asymmetry: If x≻yx \succ yxy, then y⊁xy \not\succ xyx for any elements xxx and yyy.
      3. Transitivity: For any elements xxx, yyy, and zzz, if x≻yx \succ yxy and y≻zy \succ zyz, then x≻zx \succ zxz.
  • indifference relation ∼\sim

    • read as: is indifferent to

    • The relation x1∼x2x^1 \sim x^2x1x2 holds if and only if x1⪰x2x^1 \succeq x^2x1x2 and x2⪰x1x^2 \succeq x^1x2x1.

  • Conclusion:

    For any pair x1x_1x1 and x2x_2x2, exactly one of the following three mutually exclusive possibilities holds: x1≻x2x^1 \succ x^2x1x2, or x2≻x1x^2 \succ x^1x2x1, or x1∼x2x^1 \sim x^2x1x2.

What we get for the above assumptions:

  • For example:

    For X=R+2\mathbf{X}=\mathbb{R}_+^2X=R+2, Any point in the consumption set, such as x0=(x10,x20)x^0=(x_1^0,x_2^0)x0=(x10,x20), represents a consumption plan consisting of a certain amount x10x_1^0x10 of commodity 1, together with a certain amount x20x_2^0x20 of commodity 2.

在这里插入图片描述

Based on Axioms 1 and 2, the consumer’s preference relation with respect to any given point x0x_0x0 can be categorized into three mutually exclusive sets relative to x0x^0x0:

  • the set of points worse than x0x^0x0 ($ \prec (x^0) $),

  • the set of points indifferent to x0x^0x0 ($ \sim (x^0) $),

  • and the set of points preferred to x0x^0x0 ($ \succ (x^0) $).

    Therefore, for any bundle x0x_0x0, the three sets $ \prec (x^0) $, $ \sim (x^0) $, and $ \succ (x^0) $ partition the consumption set XXX.

References

[1] Geoffrey A. Jehle, Philip J. Reny Advanced Microeconomic Theory, 3rd Edition ( 2011, Prentice Hall).

<For personal Advanced Microeconomic Theory course learning. Weiye 20231021>

2025-10-14T17:19:01.894+08:00 INFO 23520 --- [ main] com.example.bspring.BSpringApplication : Starting BSpringApplication using Java 17 with PID 23520 (D:\b-spring\target\classes started by Administrator in D:\b-spring) 2025-10-14T17:19:01.897+08:00 INFO 23520 --- [ main] com.example.bspring.BSpringApplication : No active profile set, falling back to 1 default profile: "default" 2025-10-14T17:19:02.592+08:00 INFO 23520 --- [ main] o.s.b.w.embedded.tomcat.TomcatWebServer : Tomcat initialized with port 8090 (http) 2025-10-14T17:19:02.601+08:00 INFO 23520 --- [ main] o.apache.catalina.core.StandardService : Starting service [Tomcat] 2025-10-14T17:19:02.601+08:00 INFO 23520 --- [ main] o.apache.catalina.core.StandardEngine : Starting Servlet engine: [Apache Tomcat/10.1.46] 2025-10-14T17:19:02.643+08:00 INFO 23520 --- [ main] o.a.c.c.C.[Tomcat].[localhost].[/] : Initializing Spring embedded WebApplicationContext 2025-10-14T17:19:02.644+08:00 INFO 23520 --- [ main] w.s.c.ServletWebServerApplicationContext : Root WebApplicationContext: initialization completed in 706 ms _ _ |_ _ _|_. ___ _ | _ | | |\/|_)(_| | |_\ |_)||_|_\ / | 3.5.7 2025-10-14T17:19:02.924+08:00 WARN 23520 --- [ main] c.b.m.core.metadata.TableInfoHelper : This primary key of "id" is primitive !不建议如此请使用包装类 in Class: "com.example.bspring.entity.User" 2025-10-14T17:19:03.311+08:00 INFO 23520 --- [ main] o.s.b.w.embedded.tomcat.TomcatWebServer : Tomcat started on port 8090 (http) with context path '/' 2025-10-14T17:19:03.321+08:00 INFO 23520 --- [ main] com.example.bspring.BSpringApplication : Started BSpringApplication in 1.761 seconds (process running for 2.207) 2025-10-14T17:19:18.052+08:00 INFO 23520 --- [nio-8090-exec-1] o.a.c.c.C.[Tomcat].[localhost].[/] : Initializing Spring DispatcherServlet 'dispatcherServlet' 2025-10-14T17:19:18.053+08:00 INFO 23520 --- [nio-8090-exec-1] o.s.web.servlet.DispatcherServlet : Initializing Servlet 'dispatcherServlet' 2025-10-14T17:19:18.055+08:00 INFO 23520 --- [nio-8090-exec-1] o.s.web.servlet.DispatcherServlet : Completed initialization in 1 ms 2025-10-14T17:19:18.125+08:00 INFO 23520 --- [nio-8090-exec-1] com.zaxxer.hikari.HikariDataSource : HikariPool-1 - Starting... 2025-10-14T17:19:18.234+08:00 INFO 23520 --- [nio-8090-exec-1] com.zaxxer.hikari.pool.HikariPool : HikariPool-1 - Added connection com.mysql.cj.jdbc.ConnectionImpl@76fa9d99 2025-10-14T17:19:18.235+08:00 INFO 23520 --- [nio-8090-exec-1] com.zaxxer.hikari.HikariDataSource : HikariPool-1 - Start completed. 这个启动日志显示连接成功了吗?
10-15
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值