前段时间抄袭其他的stm多通道捕获代码,调试没有通过,由于半路出家也不是读得太懂,后来发现官方有个例子,原来固件库里面自带PWM输入功能,经调试稳定可用,代码如下:
//计时器和gpio口的初始化 GPIO_InitTypeDef GPIO_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; /* TIM2 clock enable */ RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); /* GPIOB clock enable */ RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE); /* TIM2 chennel2 configuration : PA.01 */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP ; GPIO_Init(GPIOA, &GPIO_InitStructure); /* Connect TIM pin to AF1 */ GPIO_PinAFConfig(GPIOA, GPIO_PinSource1, GPIO_AF_1); /* Enable the TIM2 global Interrupt */ NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); TIM_ICInitStructure.TIM_Channel = TIM_Channel_2; TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising; TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI; TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1; TIM_ICInitStructure.TIM_ICFilter = 0x0; TIM_PWMIConfig(TIM2, &TIM_ICInitStructure); /* Select the TIM2 Input Trigger: TI2FP2 */ TIM_SelectInputTrigger(TIM2, TIM_TS_TI2FP2); /* Select the slave Mode: Reset Mode */ TIM_SelectSlaveMode(TIM2, TIM_SlaveMode_Reset); TIM_SelectMasterSlaveMode(TIM2,TIM_MasterSlaveMode_Enable); /* TIM enable counter */ TIM_Cmd(TIM2, ENABLE); /* Enable the CC2 Interrupt Request */ TIM_ITConfig(TIM2, TIM_IT_CC2, ENABLE);
相关中断函数如下:
void TIM2_IRQHandler(void)
{
RCC_GetClocksFreq(&RCC_Clocks);
/* Clear TIM2 Capture compare interrupt pending bit */
TIM_ClearITPendingBit(TIM2, TIM_IT_CC2);
/* Get the Input Capture value */
IC2Value = TIM_GetCapture2(TIM2);
if (IC2Value != 0)
{
/* Duty cycle computation */
DutyCycle = (TIM_GetCapture1(TIM2) * 100) / IC2Value;
/* Frequency computation
TIM2 counter clock = (RCC_Clocks.HCLK_Frequency)/2 */
Frequency = RCC_Clocks.HCLK_Frequency / IC2Value;
}
else
{
DutyCycle = 0;
Frequency = 0;
}
}
这个方法经测试,是简单好用的,但根据资料表明这个是通道1和通道2配合实现,其他资料也没有说明如何捕获多个通道,是否能用3和4通道配合捕获,是否1个定时器能捕获2个通道。于是网上查到另一种方法可以1个定时器捕获4个通道(),但是待测试,记录如下:
// STM32 TIM2 4 Channel Input Capture STM32F0-Discovery - sourcer32@gmail.com
#include "stm32f0xx.h"
#include "stm32f0_discovery.h"
//**************************************************************************************
void TIM2_Config(void)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_ICInitTypeDef TIM_ICInitStructure;
/* TIM2 Periph clock enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
/* TIM2 Configuration */
TIM_DeInit(TIM2);
/* Time base configuration */
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
TIM_TimeBaseStructure.TIM_Prescaler = (SystemCoreClock / 1000000) - 1; // 1 MHz, from 48 MHz
TIM_TimeBaseStructure.TIM_Period = 0xFFFFFFFF; // Maximal, TIM2 is 32-bit counter
TIM_TimeBaseStructure.TIM_ClockDivision = 0x0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising; // Rising/Falling/BothEdge
TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;
TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;
TIM_ICInitStructure.TIM_ICFilter = 0x0;
TIM_ICInitStructure.TIM_Channel = TIM_Channel_1;
TIM_ICInit(TIM2, &TIM_ICInitStructure);
TIM_ICInitStructure.TIM_Channel = TIM_Channel_2;
TIM_ICInit(TIM2, &TIM_ICInitStructure);
TIM_ICInitStructure.TIM_Channel = TIM_Channel_3;
TIM_ICInit(TIM2, &TIM_ICInitStructure);
TIM_ICInitStructure.TIM_Channel = TIM_Channel_4;
TIM_ICInit(TIM2, &TIM_ICInitStructure);
/* TIM1 enable counter */
TIM_Cmd(TIM2, ENABLE);
/* Enable the CCx Interrupt Request */
TIM_ITConfig(TIM2, TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4, ENABLE);
}
//**************************************************************************************
volatile uint32_t Freq[4];
void TIM2_IRQHandler(void)
{
uint32_t Current, Delta;
static uint32_t Last[4];
if (TIM_GetITStatus(TIM2, TIM_IT_CC1) != RESET)
{
/* Clear TIM2_CH1 Capture compare interrupt pending bit */
TIM_ClearITPendingBit(TIM2, TIM_IT_CC1);
Current = TIM_GetCapture1(TIM2);
Delta = Current - Last[0];
Last[0] = Current;
if (Delta)
Freq[0] = 1000000 / Delta; // 1MHz clock
// ..
}
if (TIM_GetITStatus(TIM2, TIM_IT_CC2) != RESET)
{
/* Clear TIM2_CH2 Capture compare interrupt pending bit */
TIM_ClearITPendingBit(TIM2, TIM_IT_CC2);
Current = TIM_GetCapture2(TIM2);
Delta = Current - Last[1];
Last[1] = Current;
if (Delta)
Freq[1] = 1000000 / Delta; // 1MHz clock
// ..
}
if (TIM_GetITStatus(TIM2, TIM_IT_CC3) != RESET)
{
/* Clear TIM2_CH3 Capture compare interrupt pending bit */
TIM_ClearITPendingBit(TIM2, TIM_IT_CC3);
Current = TIM_GetCapture3(TIM2);
Delta = Current - Last[2];
Last[2] = Current;
if (Delta)
Freq[2] = 1000000 / Delta; // 1MHz clock
// ..
}
if (TIM_GetITStatus(TIM2, TIM_IT_CC4) != RESET)
{
/* Clear TIM2_CH4 Capture compare interrupt pending bit */
TIM_ClearITPendingBit(TIM2, TIM_IT_CC4);
Current = TIM_GetCapture4(TIM2);
Delta = Current - Last[3];
Last[3] = Current;
if (Delta)
Freq[3] = 1000000 / Delta; // 1MHz clock
// ..
}
}
//**************************************************************************************
void NVIC_Config(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
/* Enable and set TIM2 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPriority = 0x00;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}
//**************************************************************************************
void GPIO_Config(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
/* GPIOA Periph clock enable */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE);
/* Configure TIM2 input */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* Connect TIM pins to AF2 */
GPIO_PinAFConfig(GPIOA, GPIO_PinSource5, GPIO_AF_2); // TIM2_CH1 PA5
GPIO_PinAFConfig(GPIOA, GPIO_PinSource1, GPIO_AF_2); // TIM2_CH2 PA1
GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_2); // TIM2_CH3 PA2
GPIO_PinAFConfig(GPIOA, GPIO_PinSource3, GPIO_AF_2); // TIM2_CH4 PA3
}
//**************************************************************************************
int main(void)
{
NVIC_Config();
GPIO_Config();
TIM2_Config();
while(1); /* Infinite loop */
}
还有另外一种方法待测试:
// Hold onto the Channel 1 init structure -- we will use it to reverse
// polarity on every edge interrupt.
static TIM_ICInitTypeDef TIM_CH1_ICInitStructure;
#define GPIO_AF_TIM2 GPIO_AF_2
void ConfigPwmIn() {
GPIO_InitTypeDef GPIO_InitStructure;
TIM_ICInitTypeDef TIM_ICInitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
TIM_DeInit(TIM2 );
/* TIM2 clock enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
/* GPIOC clock enable */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOD, ENABLE);
/* TIM2 GPIO pin configuration : CH1=PD3, C2=PD4, CH3=PD7, CH4=PD6 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_7 | GPIO_Pin_6;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(GPIOD, &GPIO_InitStructure);
/* Connect pins to TIM3 AF2 */
GPIO_PinAFConfig(GPIOD, GPIO_PinSource3, GPIO_AF_TIM2 );
GPIO_PinAFConfig(GPIOD, GPIO_PinSource4, GPIO_AF_TIM2 );
GPIO_PinAFConfig(GPIOD, GPIO_PinSource7, GPIO_AF_TIM2 );
GPIO_PinAFConfig(GPIOD, GPIO_PinSource6, GPIO_AF_TIM2 );
NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* Enable capture*/
TIM_CH1_ICInitStructure.TIM_Channel = TIM_Channel_1;
TIM_CH1_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;
TIM_CH1_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;
TIM_CH1_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;
TIM_CH1_ICInitStructure.TIM_ICFilter = 0;
TIM_ICInit(TIM2, &TIM_ICInitStructure);
TIM_ICInitStructure.TIM_Channel = TIM_Channel_2;
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Falling;
TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;
TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;
TIM_ICInitStructure.TIM_ICFilter = 0;
TIM_ICInit(TIM2, &TIM_ICInitStructure);
TIM_ICInitStructure.TIM_Channel = TIM_Channel_3;
TIM_ICInit(TIM2, &TIM_ICInitStructure);
TIM_ICInitStructure.TIM_Channel = TIM_Channel_4;
TIM_ICInit(TIM2, &TIM_ICInitStructure);
/* Enable TIM2 */
TIM_Cmd(TIM2, ENABLE);
/* Enable CC1-4 interrupt */
TIM_ITConfig(TIM2, TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4, ENABLE);
/* Clear CC1 Flag*/
TIM_ClearFlag(TIM2, TIM_FLAG_CC1 | TIM_FLAG_CC2 | TIM_FLAG_CC3 | TIM_FLAG_CC4 );
}
static volatile uint32_t ccr[4];
static volatile char pulseState = 0;
void TIM2_IRQHandler() {
if (TIM2 ->SR & TIM_IT_CC1 ) {
TIM2 ->SR &= (~TIM_IT_CC1 );
if (pulseState == 0) {
TIM_CH1_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Falling;
// Any time we get a rising edge on CH1, we reset the counter. All channels are
// phase aligned, so they all use this as a reference.
TIM_SetCounter(TIM2, 0);
} else {
TIM_CH1_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;
// Pull the value on the falling edge.
ccr[0] = TIM_GetCapture1(TIM2 );
}
pulseState = !pulseState;
// Reverse polarity.
TIM_ICInit(TIM2, &TIM_CH1_ICInitStructure);
}
if (TIM2 ->SR & TIM_IT_CC2 ) {
TIM2 ->SR &= (~TIM_IT_CC2 );
ccr[1] = TIM_GetCapture2(TIM2 );
}
if (TIM2 ->SR & TIM_IT_CC3 ) {
TIM2 ->SR &= (~TIM_IT_CC3 );
ccr[2] = TIM_GetCapture3(TIM2 );
}
if (TIM2 ->SR & TIM_IT_CC4 ) {
TIM2 ->SR &= (~TIM_IT_CC4 );
ccr[3] = TIM_GetCapture4(TIM2 );
}
}

本文介绍STM32微控制器使用定时器实现多通道信号捕获的方法,包括单定时器捕获四个通道的详细代码及配置过程,并探讨了不同配置方案的特点。
7392

被折叠的 条评论
为什么被折叠?



