HDU 1086 You can Solve a Geometry Problem too(判断线段是否相交,非规范相交)

本文介绍了一个简单的几何问题,即计算给定线段集合中所有线段的交点数量,包括重复计数的情况。文章提供了一种通过跨立实验来判断线段是否相交的方法,并给出了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You can Solve a Geometry Problem too

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5486    Accepted Submission(s): 2619


Problem Description
Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.

Note:
You can assume that two segments would not intersect at more than one point. 
 

Input
Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending. 
A test case starting with 0 terminates the input and this test case is not to be processed.
 

Output
For each case, print the number of intersections, and one line one case.
 

Sample Input
2 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 3 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.000 0.00 0.00 1.00 0.00 0
 

Sample Output
1 3
 

Author
lcy
 

这个题目就是判断线段是否规范相交,其实没什么难度,找个模板套一下就OK 了,还有就是注意可能交点是端点
这个利用的是跨立实验

#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
struct point
{
double x;
double y;
};
struct line
{
point a;
point b;
}node[1000];

double multi(point p0, point p1, point p2)//j计算差乘
{   return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);}
bool is_cross(point s1,point e1,point s2,point e2)//判断线段是否相交(非规范相交)
{
   return max(s1.x,e1.x) >= min(s2.x,e2.x)&&
          max(s2.x,e2.x) >= min(s1.x,e1.x)&&
          max(s1.y,e1.y) >= min(s2.y,e2.y)&&
          max(s2.y,e2.y) >= min(s1.y,e1.y)&&
          multi(s1,e1,s2)*multi(s1,e1,e2) <= 0&&
          multi(s2,e2,s1)*multi(s2,e2,e1) <= 0;
}
int main()
{
int n;
int i,j,k;
int ans;
while(scanf("%d",&n),n)
{
ans=0;
for(i=0;i<n;i++)
{
scanf("%lf%lf%lf%lf",&node[i].a.x,&node[i].a.y,&node[i].b.x,&node[i].b.y);
for(j=0;j<i;j++)
if(is_cross(node[j].a,node[j].b,node[i].a,node[i].b))
ans++;
}
printf("%d\n",ans);
}
return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值