Windows图形基础(一)

本文介绍了Windows环境下基本图形绘制方法,包括直线、矩形、椭圆等几何图形的绘制过程及贝塞尔曲线的使用技巧。
 

Windows可以画直线、椭圆线(椭圆圆周上的曲线)和贝塞尔曲线。

  • LineTo 画直线。
     
  • Polyline和PolylineTo 画一系列相连的直线。
     
  • PolyPolyline 画多组相连的线。
     
  • Arc 画椭圆线。
     
  • PolyBezier和PolyBezierTo 画贝塞尔曲线。
  • ArcTo和AngleArc 画椭圆线。
  • PolyDraw 画一系列相连的线以及贝塞尔曲线。

 

  • Rectangle 画矩形。
     
  • Ellipse 画椭圆。
     
  • RoundRect 画带圆角的矩形。
     
  • Pie 画椭圆的一部分,使其看起来像一个扇形。
     
  • Chord 画椭圆的一部分,以呈弓形。
     

一、画直线

          画一条直线,必须呼叫两个函数。第一个函数指定了线的开始点,第二个函数指定了线的终点:

     MoveToEx (hdc, xBeg, yBeg, NULL) ;
        
     LineTo (hdc, xEnd, yEnd) ;

如果您需要目前位置,就可以通过以下呼叫获得:

     GetCurrentPositionEx (hdc, &pt) ;   
                                其中,pt是POINT结构的。

如果你要知道当前窗体的大小,可以通过以下呼叫获得:

GetClientRect (hwnd, &rect) ; 其中,rect是RECT结构的。

 

二、画矩形:

Rectangle (hdc, xLeft, yTop, xRight, yBottom) ;
        

点(xLeft, yTop)是矩形的左上角,(xRight, yBottom)是矩形的右下角。用函数Rectangle画出的图形如下所示,矩形的边总是平行于显示器的水平和垂直边。


 

使用Rectangle函数画出的图形

考虑下面的函数呼叫:

Rectangle (hdc, 1, 1, 5, 4) ;
        

可以将显示器想象成一个网格,其中,每个图素都在一个网格单元内。边界框画在网格上,然后在边界框内画矩形,下面说明了图形画出来时的样子:


 

将矩形和显示区域左上角分开的区域有l个图素宽。

 

三、画椭圆

Ellipse (hdc, xLeft, yTop, xRight, yBottom) ;
        

用Ellipse函数画出的图形如下所示(加上了虚线构成的边界框)。


 

 用Ellipse函数画出的图形

 

四、画圆角矩形

函数使用与函数Rectangle及Ellipse函数相同的边界框,还包含另外两个参数:

RoundRect (hdc, xLeft, yTop, xRight, yBottom,
        
           xCornerEllipse, yCornerEllipse) ;
        

用这个函数画出的图形如下所示。


 

 用RoundRect函数画出的图形

Windows使用一个小椭圆来画圆角,这个椭圆的宽为xCornerEllipse,高为yCornerEllipse。可以想象这个小椭圆分为了四个部分,一个象限一个,每个刚好用在矩形的一个角上。xCornerEllipse和yCornerEllipse的值越大,角就越明显。如果xCornerEllipse等于xLeft与xRight的差,且yCornerEllipse等于yTop与yBottom的差,那么RoundRect函数将画出一个椭圆。

五、画椭圆

Arc、Chord和Pie函数都只要相同的参数:

Arc(hdc, xLeft, yTop, xRight, yBottom, xStart, yStart, xEnd, yEnd) ;
        
Chord       (hdc, xLeft, yTop, xRight, yBottom, xStart, yStart, xEnd, yEnd) ;
        
Pie(hdc, xLeft, yTop, xRight, yBottom, xStart, yStart, xEnd, yEnd) ;
        

用Arc函数画出的线如图1所示;用Chord和Pie函数画出的线分别如图2和3所示。Windows用一条假想的线将(xStart, yStart)与椭圆的中心连接,从该线与边界框的交点开始,Windows按反时针方向,沿着椭圆画一条弧。Windows还用另一条假想的线将(xEnd,yEnd)与椭圆的中心连接,在该线与边界框的交点处,Windows停止画弧。


 

图1 Arc函数画出的线


 

图2 Chord函数画出的线


 

图3 Pie函数画出的线

对于Arc函数,这样就结束了。因为弧只是一条椭圆形的线而已,而不是一个填入区域。对于Chord函数,Windows连接弧线的端点。而对于Pie函数,Windows将弧的两个端点与椭圆的中心相连接。弦与扇形图的内部以目前画刷填入。

您可能不太明白在Arc、Chord和Pie函数中开始和结束位置的用法,为什么不简单地在椭圆的周在线指定开始和结束点呢?是的,您可以这么做,但是您将不得不算出这些点。Windows的方法在不要求这种精确性的条件下,却完成了相同的工作。

程序 LINEDEMO画一个矩形、一个椭圆、一个圆角矩形和两条线段,不过不是按这一顺序。程序表明了定义封闭区域的函数实际上对这些区域进行了填入,因为在椭圆后面的线被遮住了,结果如图LINEDEMO中所示。

程序 LINEDEMO
        
LINEDEMO.C
        
/*---------------------------------------------------------
        
  LINEDEMO.C -- Line-Drawing Demonstration Program
        
                          (c) Charles Petzold, 1998
        
----------------------------------------------------------*/
        
#include <windows.h>
        
LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
        
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
        
                                  PSTR szCmdLine, int iCmdShow)
        
{
        
    static TCHAR szAppName[] = TEXT ("LineDemo") ;
        
    HWND          hwnd ;
        
    MSG           msg ;
        
    WNDCLASS      wndclass ;
        
   
        
    wndclass.style        = CS_HREDRAW | CS_VREDRAW ;
        
    wndclass.lpfnWndProc= WndProc ;
        
    wndclass.cbClsExtra   = 0 ;
        
    wndclass.cbWndExtra = 0 ;
        
    wndclass.hInstance    = hInstance ;
        
    wndclass.hIcon        = LoadIcon (NULL, IDI_APPLICATION) ;
        
    wndclass.hCursor      = LoadCursor (NULL, IDC_ARROW) ;
        
    wndclass.hbrBackground= (HBRUSH) GetStockObject (WHITE_BRUSH) ;
        
    wndclass.lpszMenuName= NULL ;
        
    wndclass.lpszClassName= szAppName ;
        
   
        
    if (!RegisterClass (&wndclass))
        
    {
        
            MessageBox (NULL, TEXT ("Program requires Windows NT!"),
        
                    szAppName, MB_ICONERROR) ;
        
            return 0 ;
        
    }
        
   
        
    hwnd = CreateWindow (szAppName, TEXT ("Line Demonstration"),
        
                                         WS_OVERLAPPEDWINDOW,
        
                                  CW_USEDEFAULT, CW_USEDEFAULT,
        
                           CW_USEDEFAULT, CW_USEDEFAULT,
        
                           NULL, NULL, hInstance, NULL) ;
        
   
        
    ShowWindow (hwnd, iCmdShow) ;
        
    UpdateWindow (hwnd) ;
        
   
        
    while (GetMessage (&msg, NULL, 0, 0))
        
    {
        
            TranslateMessage (&msg) ;
        
            DispatchMessage (&msg) ;
        
    }
        
            return msg.wParam ;
        
}
        

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
        
{
        
    static int  cxClient, cyClient ;
        
    HDC           hdc ;
        
    PAINTSTRUCT ps ;
        
   
        
    switch (message)
        
    {
        
    case   WM_SIZE:
        
            cxClient = LOWORD (lParam) ;
        
            cyClient = HIWORD (lParam) ;
        
            return 0 ;
        
        
        
    case   WM_PAINT:
        
            hdc = BeginPaint (hwnd, &ps) ;
        
        
        
            Rectangle (hdc,    cxClient / 8,     cyClient / 8,
        
                     7 * cxClient / 8, 7 * cyClient / 8) ;
        
        
        
            MoveToEx  (hdc,        0,        0, NULL) ;
        
            LineTo    (hdc, cxClient, cyClient) ;
        
        
        
            MoveToEx  (hdc,        0, cyClient, NULL) ;
        
            LineTo    (hdc, cxClient,        0) ;
        
        
        
            Ellipse   (hdc,    cxClient / 8,     cyClient / 8,
        
                     7 * cxClient / 8, 7 * cyClient / 8) ;
        
        
        
            RoundRect (hdc,     cxClient / 4,     cyClient / 4,
        
                     3 * cxClient / 4, 3 * cyClient / 4,
        
                           cxClient / 4,     cyClient / 4) ;
        
        
        
            EndPaint (hwnd, &ps) ;
        
            return 0 ;
        
        
        
    case   WM_DESTROY:
        
            PostQuitMessage (0) ;
        
            return 0 ;
        
    }
        
    return DefWindowProc (hwnd, message, wParam, lParam) ;
        
}
        


 

图 LINEDEMO显示

 

六、贝塞尔曲线

「曲尺」这个词从前指的是一片木头、橡皮或者金属,用来在纸上画曲线。比如说,如果您有一些不同图点,您想要在它们之间画一条曲线(内插或者外插),您首先将这些点描在绘图纸上,然后,将曲尺定在这些点上,并用铅笔沿着曲尺绕着这些点弯曲的方向画曲线。

当然,时至今日,曲尺已经数学公式化了。有很多种不同的曲尺公式,它们各有千秋。贝塞尔曲线是计算机程序设计中用得最广的曲尺公式之一,它是直到最近才加到操作系统层次的图形支持中的。在六十年代Renault汽车公司进行了由手工设计车体(要用到粘土)到计算机辅助设计的转变。他们需要一些数学工具,而Pierm Bezier找到了一套公式,最后显示出这套公式应付这样的工作非常有用。

此后,二维的贝塞尔曲线成了计算机图学中最有用的曲线(在直线和椭圆之后)。在PostScript中,所有曲线都用贝塞尔曲线表示-椭圆线用贝塞尔曲线来逼近。贝塞尔曲线也用于定义PostScript字体的字符轮廓(TrueType使用一种更简单更快速的曲尺公式)。

一条二维的贝塞尔曲线由四个点定义-两个端点和两个控制点。曲线的端点在两个端点上,控制点就好像「磁石」一样把曲线从两个端点间的直线处拉走。这一点可以由底下的BEZIER互动交谈程序做出最好的展示。

程序  BEZIER
        
BEZIER.C
        
/*-----------------------------------------------------------------------
        
    BEZIER.C -- Bezier Splines Demo
        
                          (c) Charles Petzold, 1998
        
------------------------------------------------------------------------*/
        
#include <windows.h>
        
LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
        
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
        
                          PSTR szCmdLine, int iCmdShow)
        
{
        
    static TCHAR szAppName[] = TEXT ("Bezier") ;
        
    HWND          hwnd ;
        
    MSG           msg ;
        
    WNDCLASS      wndclass ;
        

    wndclass.style        = CS_HREDRAW | CS_VREDRAW ;
        
    wndclass.lpfnWndProc= WndProc ;
        
    wndclass.cbClsExtra   = 0 ;
        
    wndclass.cbWndExtra   = 0 ;
        
    wndclass.hInstance    = hInstance ;
        
    wndclass.hIcon        = LoadIcon (NULL, IDI_APPLICATION) ;
        
   wndclass.hCursor      = LoadCursor (NULL, IDC_ARROW) ;
        
    wndclass.hbrBackground= (HBRUSH) GetStockObject (WHITE_BRUSH) ;
        
    wndclass.lpszMenuName= NULL ;
        
    wndclass.lpszClassName= szAppName ;
        
   
        
    if (!RegisterClass (&wndclass))
        
    {
        
            MessageBox (NULL, TEXT ("Program requires Windows NT!"),
        
                                    szAppName, MB_ICONERROR) ;
        
                  return 0 ;
        
    }
        
   
        
    hwnd = CreateWindow (szAppName, TEXT ("Bezier Splines"),
        
                                         WS_OVERLAPPEDWINDOW,
        
                           CW_USEDEFAULT, CW_USEDEFAULT,
        
                           CW_USEDEFAULT, CW_USEDEFAULT,
        
                           NULL, NULL, hInstance, NULL) ;
        
   
        
    ShowWindow (hwnd, iCmdShow) ;
        
    UpdateWindow (hwnd) ;
        
   
        
    while (GetMessage (&msg, NULL, 0, 0))
        
    {
        
            TranslateMessage (&msg) ;
        
            DispatchMessage (&msg) ;
        
    }
        
    return msg.wParam ;
        
}
        

void DrawBezier (HDC hdc, POINT apt[])
        
{
        
    PolyBezier (hdc, apt, 4) ;
        
    MoveToEx (hdc, apt[0].x, apt[0].y, NULL) ;
        
    LineTo   (hdc, apt[1].x, apt[1].y) ;
        
   
        
    MoveToEx (hdc, apt[2].x, apt[2].y, NULL) ;
        
    LineTo   (hdc, apt[3].x, apt[3].y) ;
        
}
        
LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
        
{
        
    static POINT apt[4] ;
        
    HDC          hdc ;
        
    int          cxClient, cyClient ;
        
    PAINTSTRUCT  ps ;
        

    switch (message)
        
    {
        
    case WM_SIZE:
        
            cxClient = LOWORD (lParam) ;
        
            cyClient = HIWORD (lParam) ;
        
        
        
                   apt[0].x = cxClient / 4 ;
        
                   apt[0].y = cyClient / 2 ;
        
        
        
                   apt[1].x = cxClient / 2 ;
        
                   apt[1].y = cyClient / 4 ;
        
        
        
                   apt[2].x = cxClient / 2 ;
        
                   apt[2].y = 3 * cyClient / 4 ;
        
        
        
                   apt[3].x = 3 * cxClient / 4 ;
        
                   apt[3].y = cyClient / 2 ;
        
        
        
                   return 0 ;
        

    case WM_LBUTTONDOWN:
        
    case WM_RBUTTONDOWN:
        
    case WM_MOUSEMOVE:
        
            if (wParam & MK_LBUTTON || wParam & MK_RBUTTON)
        
            {
        
                   hdc = GetDC (hwnd) ;
        
                   SelectObject (hdc, GetStockObject (WHITE_PEN)) ;
        
                   DrawBezier (hdc, apt) ;
        
             
        
                   if (wParam & MK_LBUTTON)
        
                   {
        
                           apt[1].x = LOWORD (lParam) ;
        
                           apt[1].y = HIWORD (lParam) ;
        
                   }
        
             
        
              if (wParam & MK_RBUTTON)
        
                  {
        
                                   apt[2].x = LOWORD (lParam) ;
        
                                   apt[2].y = HIWORD (lParam) ;
        
                   }
        
             
        
                   SelectObject (hdc, GetStockObject (BLACK_PEN)) ;
        
                   DrawBezier (hdc, apt) ;
        
                   ReleaseDC (hwnd, hdc) ;
        
            }
        
                   return 0 ;
        
    case   WM_PAINT:
        
            InvalidateRect (hwnd, NULL, TRUE) ;
        
        
        
            hdc = BeginPaint (hwnd, &ps) ;
        
        
        
            DrawBezier (hdc, apt) ;
        
        
        
            EndPaint (hwnd, &ps) ;
        
            return 0 ;
        
        
        
    case WM_DESTROY:
        
            PostQuitMessage (0) ;
        
            return 0 ;
        
    }
        
    return DefWindowProc (hwnd, message, wParam, lParam) ;
        
}
        

这个程序来实验性地操纵贝塞尔曲线。在这个程序中,两个顶点设定在显示区域的上下居中、左右位于1/4和3/4处的位置;两个控制点可以改变,按住鼠标左键或右键并拖动鼠标可以分别改动两个控制点之一。这是一个典型的例子。

除了贝塞尔曲线本身,程序还从第一个控制点向左边的第一个端点(也叫做开始点)画一条直线,并从第二个控制点向右边的端点画一条直线。

由于下面几个特点,贝塞尔曲线在计算机辅助设计中非常有用。首先,经过少量练习,就可以把曲线调整到与想要的形状非常接近。


 

图 BEZIER程序的显示

其次,贝塞尔曲线非常好控制。对于有的曲尺种类来说,曲线不经过任何一个定义该曲线的点。贝塞尔曲线总是由其两个端点开始和结束的(这是在推导贝塞尔公式时所做的假设之一)。另外,有些形式的曲尺公式有奇异点,在这些点处曲线趋向无穷远,这在计算机辅助设计中通常是很不合适的。事实上,贝塞尔曲线总是受限于一个四边形(叫做「凸包」),这个四边形由端点和控制点连接而成。

第三个特点涉及端点和控制点之间的关系。曲线总是与第一个控制点到起点的直线相切,并保持同一方向;同时,也与第二个控制点到终点的直线相切,并保持同一方向。这是用于推导贝塞尔公式时所做的另外两个假设。

第四,贝塞尔曲线通常比较具有美感。我知道这是一个主观评价的问题,不过,并非只有我才这样想。

在32位的Windows版本之前,您必须利用Polyline来自己建立贝塞尔曲线,并且还需要知道下面的贝塞尔曲线的参数方程。起点是( x0,y0),终点是( x3,y3),两个控制点是(x1,y1)和(x2,y2),随着t的值从0到1的变化,就可以画出曲线:

x(t) = (1 - t)3 x0 + 3t (1 - t)2 x1 + 3t2 (1 - t) x2 + t3 x3
        
y(t) = (1 - t)3 y0 + 3t (1 - t)2 y1 + 3t2 (1 - t) y2 + t3 y3
        

在Windows 98中,您不需要知道这些公式。要画一条或多条连接的贝塞尔曲线,只需呼叫:

PolyBezier (hdc, apt, iCount) ;
        

PolyBezierTo (hdc, apt, iCount) ;
        

两种情况下,apt都是POINT结构的数组。对PolyBezier,前四个点(按照顺序)给出贝塞尔曲线的起点、第一个控制点、第二个控制点和终点。此后的每一条贝塞尔曲线只需给出三个点,因为后一条贝塞尔曲线的起点就是前一条贝塞尔曲线的终点,如此类推。iCount参数等于1加上您所绘制的这些首尾相接曲线条数的三倍。

PolyBezierTo函数使用目前点作为第一个起点,第一条以及后续的贝塞尔曲线都只需要给出三个点。当函数传回时,目前点设定为最后一个终点。

一点提示:在画一系列相连的贝塞尔曲线时,只有当第一条贝塞尔曲线的第二个控制点、第一条贝塞尔曲线的终点(也就是第二条曲线的起点)和第二条贝塞尔曲线的第一个控制点线性相关时,也就是说这三个点在同一条直线上时,曲线在连接点处才是光滑的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值