[LeetCode]Pow(x, n)

本文介绍了一种使用C++实现快速幂运算的方法,通过递归分治的方式提高计算效率,适用于整数和浮点数的幂次方计算。
class Solution {
//divide-and-conquer
//classic
public:
	double pow(double x, int n) {
		if (n == 0) return 1.0;
		// Compute x^{n/2} and store the result into a temporary
		// variable to avoid unnecessary computing
		double half = pow(x, n / 2);
		if (n % 2 == 0)
			return half * half;
		else if (n > 0)
			return half * half * x;
		else
			return half * half / x;
	}
};

second time

class Solution {
public:
    double pow(double x, int n) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        if(n == 0) return 1;
        else if(n > 0)
        {
            double half = pow(x, n/2);
            if(n%2 == 0) return half*half;
            else return half*half*x;
        } 
        else
        {
            n = -n;
            double half = pow(x, n/2);
            if(n%2 == 0) return 1.0/(half*half);
            else return 1.0/(half*half*x);
        }
    }
};


下载方式:https://pan.quark.cn/s/a4b39357ea24 布线问题(分支限界算法)是计算机科学和电子工程领域中一个广为人知的议题,它主要探讨如何在印刷电路板上定位两个节点间最短的连接路径。 在这一议题中,电路板被构建为一个包含 n×m 个方格的矩阵,每个方格能够被界定为可通行或不可通行,其核心任务是定位从初始点到最终点的最短路径。 分支限界算法是处理布线问题的一种常用策略。 该算法与回溯法有相似之处,但存在差异,分支限界法仅需获取满足约束条件的一个最优路径,并按照广度优先或最小成本优先的原则来探索解空间树。 树 T 被构建为子集树或排列树,在探索过程中,每个节点仅被赋予一次成为扩展节点的机会,且会一次性生成其全部子节点。 针对布线问题的解决,队列式分支限界法可以被采用。 从起始位置 a 出发,将其设定为首个扩展节点,并将与该扩展节点相邻且可通行的方格加入至活跃节点队列中,将这些方格标记为 1,即从起始方格 a 到这些方格的距离为 1。 随后,从活跃节点队列中提取队首节点作为下一个扩展节点,并将与当前扩展节点相邻且未标记的方格标记为 2,随后将这些方格存入活跃节点队列。 这一过程将持续进行,直至算法探测到目标方格 b 或活跃节点队列为空。 在实现上述算法时,必须定义一个类 Position 来表征电路板上方格的位置,其成员 row 和 col 分别指示方格所在的行和列。 在方格位置上,布线能够沿右、下、左、上四个方向展开。 这四个方向的移动分别被记为 0、1、2、3。 下述表格中,offset[i].row 和 offset[i].col(i=0,1,2,3)分别提供了沿这四个方向前进 1 步相对于当前方格的相对位移。 在 Java 编程语言中,可以使用二维数组...
源码来自:https://pan.quark.cn/s/a4b39357ea24 在VC++开发过程中,对话框(CDialog)作为典型的用户界面组件,承担着与用户进行信息交互的重要角色。 在VS2008SP1的开发环境中,常常需要满足为对话框配置个性化背景图片的需求,以此来优化用户的操作体验。 本案例将系统性地阐述在CDialog框架下如何达成这一功能。 首先,需要在资源设计工具中构建一个新的对话框资源。 具体操作是在Visual Studio平台中,进入资源视图(Resource View)界面,定位到对话框(Dialog)分支,通过右键选择“插入对话框”(Insert Dialog)选项。 完成对话框内控件的布局设计后,对对话框资源进行保存。 随后,将着手进行背景图片的载入工作。 通常有两种主要的技术路径:1. **运用位图控件(CStatic)**:在对话框界面中嵌入一个CStatic控件,并将其属性设置为BST_OWNERDRAW,从而具备自主控制绘制过程的权限。 在对话框的类定义中,需要重写OnPaint()函数,负责调用图片资源并借助CDC对象将其渲染到对话框表面。 此外,必须合理处理WM_CTLCOLORSTATIC消息,确保背景图片的展示不会受到其他界面元素的干扰。 ```cppvoid CMyDialog::OnPaint(){ CPaintDC dc(this); // 生成设备上下文对象 CBitmap bitmap; bitmap.LoadBitmap(IDC_BITMAP_BACKGROUND); // 获取背景图片资源 CDC memDC; memDC.CreateCompatibleDC(&dc); CBitmap* pOldBitmap = m...
### C语言实现 以下提供两种C语言实现`pow(x, n)`的代码: #### 递归实现 ```c double myPow(double x, int n){ if (n == 0) return 1.0; if (n == 1) return x; if (n == -1) return 1.0 / x; double half = myPow(x, n / 2); double odevity = myPow(x, n % 2); return odevity * half * half; } ``` 此代码通过递归调用自身来计算`x`的`n`次幂,对于`n`为0、1、 - 1的情况直接返回结果,对于其他情况,将`n`分解为两部分计算,最后相乘得到结果[^2]。 #### 另一种递归实现 ```c double myPow(double x, int n){ if(n == 0 || x == 1){ return 1; } if(n < 0){ return 1/(x*myPow(x,-(n+1))); } if(n % 2 == 0){ return myPow(x*x,n/2); } else{ return x*myPow(x*x,(n - 1)/2); } } ``` 该代码对于`n`为0或者`x`为1的情况直接返回1;当`n`为负数时,将其转换为正数来处理;根据`n`的奇偶性进行不同的递归计算,奇数时多乘一个`x`,偶数时对`x`平方后`n`除2继续递归[^3]。 ### 分析总结 本题是要实现计算`x`的`n`次幂函数`pow(x, n)`。如果直接将`n`个`x`相乘,时间复杂度为$O(n)$,会超时。本题的核心思路是将`n`分解成二进制的数,然后预处理`x`的二进制次方。若`n`的二进制的第`k`位是1,则答案可以乘上`x`的$2^k$次方,而计算`x`的$2^k$次方,只需每次将自身做平方即可,这样可以将时间复杂度优化到$O(log n)$ [^4]。 递归实现的代码逻辑较为清晰,易于理解,但会存在函数调用的开销。在处理负数指数时需要额外的转换操作。同时要注意整数溢出的问题,在处理`n`为`INT_MIN`时可能会出现问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI记忆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值