Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively
in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
题意:
此题是Unique Paths的一个变种,就是在二维数组中增加一些特殊的障碍,但是其实归根到底都是DP(动态规划)的类型。考虑几种特殊情况就行了,首先这里增加了一个obstacleGrid数组,这个数组中存储有每个位置上的值,1代表有障碍,0代表没有障碍;那么我另外又开了一个二维数组用来保存走到每一个位置的种树。但是这里要考虑的是,在第一行和第一列中,如果一旦一个位置出现了1,那么后面的所有格子都将是0,这里要特别注意。另外格子和之前考虑的一样,都是左边和上边的那两个格子的值相加。
public static int uniquePathsWithObstacles(int[][] obstacleGrid)
{
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] nums = new int[m][n];
if(obstacleGrid[0][0] == 1)
return 0;
nums[0][0] = 1;
for(int i = 0; i < m; i++)
{
for(int j = 0; j < n; j++)
{
if(i == 0 && j > 0)
{
if(obstacleGrid[i][j] == 0 && obstacleGrid[i][j - 1] != 1 && nums[i][j-1] != 0)
nums[i][j] = 1;
else if(obstacleGrid[i][j] == 0 && obstacleGrid[i][j - 1] == 1)
nums[i][j] = 0;
else if(obstacleGrid[i][j] == 1)
nums[i][j] = 0;
}
if(i > 0 && j == 0)
{
if(obstacleGrid[i][j] == 0 && obstacleGrid[i-1][j] != 1 && nums[i-1][j] != 0)
nums[i][j] = 1;
else if(obstacleGrid[i][j] == 0 && obstacleGrid[i-1][j] == 1)
nums[i][j] = 0;
else if(obstacleGrid[i][j] == 1)
nums[i][j] = 0;
}
if(i > 0 && j > 0)
{
if(obstacleGrid[i][j] == 1)
nums[i][j] = 0;
else if(obstacleGrid[i][j] != 1)
nums[i][j] = nums[i-1][j] + nums[i][j-1];
}
}
}
return nums[m-1][n-1];
}