理论: 图论(3): 图的搜索

本文探讨图论中的搜索算法,重点在于如何通过DFS判断一个图是否为二分图。二分图是指能用两种颜色对所有顶点进行染色,使得相邻顶点颜色不同的图。通过从任意顶点开始,使用深度优先搜索可以判断图是否可使用两种颜色染色。同时,文中也提及了在图不连通的情况下,需要检查所有顶点,以及如何通过DFS修改实现图的连通性和拓扑排序的判断,整体时间复杂度为O(V + E)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总括

简单的来说在先前的博客中提到过的BFS DFS 就是图论的搜索算法只是为加以提及。

现在我们通过一道题来从新学习一下搜索: 二分图的判定
·
·
给定固有N个顶点的图。 要给这N个顶点涂上颜色, 并且使相邻顶点颜色不同。

问是能否使用最多2种颜色进行染色?题目保证没有重边和自环

分析

把相邻顶点染成不同颜色的问题叫做图的着色问题。 对图进行染色所需要的最小的颜色数称为最小着色数。

最小着色数为2的图称之为二分图;

如果只用2中颜色, 那么确定一个顶点的颜色之后, 和它相邻的顶点的颜色也就可以确定了。

因此, 从任意顶点出发, 依次确定相邻顶点的颜色, 就可以判断是否可以被两种颜色染色了 。这个问题用DFS可以轻松实现

源码分析

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>

using namespace std;

vector<int>G[100];
int V;
int color[100];

bool DFS(int v, int c)
{
    color[v] = c;
    for (int i = 1; i < G[v].size(); i++)
    {/*如果相邻的顶点已经染色且颜色相同返回false*/
        if (color[G[v][i]] == c)
            return false;
            /*如果相邻顶点未被染色 向下递归染色*/
        if (color[G[v][i]] == 0 && !DFS(G[v][i, -c]))
            return false;
    }
    /*所有相邻顶点都被染色的时候返回true;*/
    return true;
}

int main(void)
{
    /*图的读入部分省略*/
    for (int i = 0; i < V; i++)
    {/*确保图被完全的遍历*/
        if (color[i] == 0)
        {
            if (!DFS(i, 1))
            {
                printf("NO\n");
                return 0;
            }
        }
    }
    printf("YES\n");
    return 0;
}

注意

如果图是连通的, 那么一次遍历就可以访问全部顶点。 但是题目的描述中没有说明, 那么有可能是不连通的, 这样就需要依次检查每个顶点是否被访问过。

判断图是否连联通或者是一棵树, 那只需要将DFS进行一些修改就可以。

通过DFS也可以求图的拓扑排序。 由于每个顶点和每条边都取一次所以最终的时间复杂度都是 O(V + E)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值