图像梯度(水平和垂直梯度)提取边缘信息

本文介绍了边缘检测的基本原理,包括使用边缘增强算子和定义边缘强度来提取图像边缘。重点讨论了Matlab中的edge函数以及微分算子法,特别是如何利用一阶导数模板卷积运算来检测图像的水平和垂直梯度,以突出灰度变化并提取边缘点集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

边缘检测的基本思想首先是(1)利用边缘增强算子,突出图像中的局部边缘,(2)然后定义象素的“边缘强度”,通过设置阈值的方法提取边缘点集。由于噪声和模糊的存在,监测到的边界可能会变宽或在某点处发生间断。因此,边界检测包括两个基本内容:

i.         用边缘算子提取出反映灰度变化的边缘点集

ii.        在边缘点集合中剔除某些边界点或填补边界间断点,并将这些边缘连接成完整的线

常用的检测算子有微分算子、拉普拉斯高斯算子和canny算子。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值