Leetcode233 Number of Digit One

Given an integer n, count the total number of digit 1 appearing in all non-negative integers less than or equal to n.

For example:
Given n = 13,

Return 6, because digit 1 occurred in the following numbers: 1, 10, 11, 12, 13.


public class Solution233 {
    public int countDigitOne(int n) {
        int ans = 0;
        long cnt = 10;

        if(n <= 0) return ans;

        while (n/cnt >= 0) {
            long next = n/cnt, before = n%(cnt/10), mod = (n-(next*cnt))/(cnt/10);

            ans += next*(cnt/10);

            if(mod == 1) ans += before+1;
            else if(mod > 1) {
                ans += cnt/10;
            }

            cnt *= 10;
            //System.out.println("next = "+next+" before = "+before+" mod = "+mod+" n = "+n+" cnt = "+cnt+" ans ="+ans);

            if(next == 0) break;
        }

        return ans;
    }
    public int compute(int n) {
        int ans = 0;

        while (n > 0) {
            if(n%10 == 1)
                ans += 1;
            n = n / 10;
        }
        return ans;
    }
    public int countOne(int n) {
        int ans = 0;

        for (int i = 1; i <= n; i++) {
            ans+=compute(i);
        }

        return ans;
    }
    public static void main(String[] args) {
        Solution233 result = new Solution233();
        long ans = result.countDigitOne(1410065408);
        //int ans = result.countOne(7925);
        System.out.println(ans);
    }
}


### LeetCode Problem 37: Sudoku Solver #### Problem Description The task involves solving a partially filled Sudoku puzzle. The input is represented as a two-dimensional integer array `board` where each element can be either a digit from '1' to '9' or '.' indicating empty cells. #### Solution Approach To solve this problem, one approach uses backtracking combined with depth-first search (DFS). This method tries placing numbers between 1 and 9 into every cell that contains '.', checking whether it leads to a valid solution by ensuring no conflicts arise within rows, columns, and subgrids[^6]. ```cpp void solveSudoku(vector<vector<char>>& board) { backtrack(board); } bool backtrack(vector<vector<char>> &board){ for(int row = 0; row < 9; ++row){ for(int col = 0; col < 9; ++col){ if(board[row][col] != '.') continue; for(char num='1';num<='9';++num){ if(isValidPlacement(board,row,col,num)){ placeNumber(num,board,row,col); if(backtrack(board)) return true; removeNumber(num,board,row,col); } } return false; } } return true; } ``` In the provided code snippet: - A function named `solveSudoku()` initiates the process. - Within `backtrack()`, nested loops iterate over all positions in the grid looking for unassigned spots denoted by '.' - For any such spot found, attempts are made to insert digits ranging from '1' through '9'. - Before insertion, validation checks (`isValidPlacement`) ensure compliance with Sudoku rules regarding uniqueness per row/column/subgrid constraints. - If inserting a number results in reaching a dead end without finding a complete solution, removal occurs before trying another possibility. This algorithm continues until filling out the entire board correctly or exhausting possibilities when returning failure status upward along recursive calls stack frames. --related questions-- 1. How does constraint propagation improve efficiency while solving puzzles like Sudoku? 2. Can genetic algorithms provide alternative methods for tackling similar combinatorial problems effectively? 3. What optimizations could enhance performance further beyond basic DFS/backtracking techniques used here?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值