Tensorflow nmt的数据预处理过程

本文详细介绍了TensorFlow NMT项目中,使用Dataset API进行训练数据和推断数据的预处理过程。内容包括训练数据的处理步骤,特别是如何对齐数据以及num_buckets参数的作用。同时,文章提到了转换文本数据为模型输入的过程,以及超参数配置对数据处理的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tensorflow nmt的数据预处理过程  

在tensorflow/nmt项目中,训练数据和推断数据的输入使用了新的Dataset API,应该是tensorflow 1.2之后引入的API,方便数据的操作。如果你还在使用老的Queue和Coordinator的方式,建议升级高版本的tensorflow并且使用Dataset API。

本教程将从训练数据推断数据两个方面,详解解析数据的具体处理过程,你将看到文本数据如何转化为模型所需要的实数,以及中间的张量的维度是怎么样的,batch_size和其他超参数又是如何作用的。

训练数据的处理

先来看看训练数据的处理。训练数据的处理比推断数据的处理稍微复杂一些,弄懂了训练数据的处理过程,就可以很轻松地理解推断数据的处理。
训练数据的处理代码位于nmt/utils/iterator_utils.py文件内的get_iterator函数。我们先来看看这个函数所需要的参数是什么意思:

参数 解释
src_dataset 源数据集
tgt_dataset 目标数据集
src_vocab_table 源数据单词查找表,就是个单词和int类型数据的对应表
tgt_vocab_table 目标数据单词查找表,就是个单词和int类型数据的对应表
batch_size 批大小
sos 句子开始标记
eos 句子结尾标记
random_seed 随机种子,用来打乱数据集的
num_buckets 桶数量
src_max_len 源数据最大长度</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值