ModelNet40数据集可视化:
import open3d as o3d
import numpy as np
from plyfile import PlyData
from PIL import Image
# 读取 PLY 文件内容
def read_ply_file(file_path):
try:
ply_data = PlyData.read(file_path)
print("PLY 文件内容成功读取")
return ply_data
except Exception as e:
print(f"读取 PLY 文件时出错: {e}")
return None
# 将 PlyData 转换为 Open3D 的点云数据结构
def convert_to_open3d_point_cloud(ply_data):
if ply_data:
vertex_data = ply_data['vertex'].data
points = np.array([vertex_data['x'], vertex_data['y'], vertex_data['z']]).T
point_cloud = o3d.geometry.PointCloud()
point_cloud.points = o3d.utility.Vector3dVector(points)
return point_cloud
else:
return None
# 将点云绕 x, y, z 轴旋转
def rotate_point_cloud(point_cloud, angle_x, angle_y, angle_z):
R_x = np.array([
[1, 0, 0],
[0, np.cos(angle_x), -np.sin(angle_x)],
[0, np.sin(angle_x), np.cos(angle_x)]
])
R_y = np.array([
[np.cos(angle_y), 0, np.sin(angle_y)],
[0, 1, 0],
[-np.sin(angle_y), 0, np.cos(angle_y)]
])
R_z = np.array([
[np.cos(angle_z), -np.sin(angle_z), 0],
[np.sin(angle_z), np.cos(angle_z), 0],
[0, 0, 1]
])
R = R_z @ R_y @ R_x
points = np.asarray(point_cloud.points)
rotated_points = points @ R.T
point_cloud.points = o3d.utility.Vector3dVector(rotated_points)
# 可视化点云数据并保存当前视角图片
def visualize_and_save_point_cloud(point_cloud, save_path):
if point_cloud:
vis = o3d.visualization.Visualizer()
vis.create_window()

最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



