Error "Input Error: There is no script engine for file extension ".JS"

本文介绍了解决在ITM Resource Model Builder中调试JavaScript资源模型时出现的“找不到脚本引擎”错误的方法。通常是因为系统中.js文件扩展名的关联丢失导致的问题。文章提供了检查和修复扩展名关联的具体步骤。
Problem(Abstract)
Debugging a resource model causes the error above to appear.
 
 
Cause
It's possible the association of the "*.js" extension with a script engine/debugger has been lost.
 
 
Resolving the problem
Attempting to debug a Javascript-based Resource Model in the ITM Resource Model Builder (RMB), the "Play" button/icon is selected to start debugging. The Play icon changes from Green to grey, and the Stop icon turns from grey to Red, as it should when debugging is activated. But after a fraction of a second it stops and goes back to green without starting a debugger.
Check the Javascript console for the error. Sometimes if the .JS extension was associated with something else on the system other than JSFile, it won't be able to find the "ScriptEngine" entry for that type in HKEY_CLASSES_ROOT, and will fail to start the debugger. The lowest frame in the RMB window has a series of tabs at the bottom (Tasks, RMB Logging Viewer, RMB Indication Viewer, RMB Event Viewer, and Javascript Console). Choose "Javascript Console" tab to see any errors. For example, it might show the following:

Microsoft (R) Windows Script Host Version 5.6
Copyright (C) Microsoft Corporation 1996-2001. All rights reserved.

Input Error: There is no script engine for file extension ".JS".

If so, then check the current association of the ".JS" extension on that Windows system by running the following command:

ASSOC .JS

It should show something like ".js=JSFile" on a working system. If it shows something else, note what it is for safekeeping and then change it with:

ASSOC .JS=JSFile

Verify the change using "ASSOC .JS" again. Then retry the debugger to confirm it works this time, watching the Javascript console for any other errors.
(vllm) zhzx@zhzx-S2600WF-LS:/media/zhzx/ssd2/Qwen3-32B-AWQ$ CUDA_VISIBLE_DEVICES=0,1 python -m vllm.entrypoints.api_server \ --model /media/zhzx/ssd2/Qwen3-32B-AWQ \ --tensor-parallel-size 2 \ --quantization awq \ --trust-remote-code INFO 05-12 11:01:48 [__init__.py:239] Automatically detected platform cuda. INFO 05-12 11:01:50 [api_server.py:121] vLLM API server version 0.8.5.post1 INFO 05-12 11:01:50 [api_server.py:122] args: Namespace(host=None, port=8000, ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, enable_ssl_refresh=False, ssl_cert_reqs=0, root_path=None, log_level='debug', model='/media/zhzx/ssd2/Qwen3-32B-AWQ', task='auto', tokenizer=None, hf_config_path=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=True, allowed_local_media_path=None, load_format='auto', download_dir=None, model_loader_extra_config={}, use_tqdm_on_load=True, config_format=<ConfigFormat.AUTO: 'auto'>, dtype='auto', max_model_len=None, guided_decoding_backend='auto', reasoning_parser=None, logits_processor_pattern=None, model_impl='auto', distributed_executor_backend=None, pipeline_parallel_size=1, tensor_parallel_size=2, data_parallel_size=1, enable_expert_parallel=False, max_parallel_loading_workers=None, ray_workers_use_nsight=False, disable_custom_all_reduce=False, block_size=None, gpu_memory_utilization=0.9, swap_space=4, kv_cache_dtype='auto', num_gpu_blocks_override=None, enable_prefix_caching=None, prefix_caching_hash_algo='builtin', cpu_offload_gb=0, calculate_kv_scales=False, disable_sliding_window=False, use_v2_block_manager=True, seed=None, max_logprobs=20, disable_log_stats=False, quantization='awq', rope_scaling=None, rope_theta=None, hf_token=None, hf_overrides=None, enforce_eager=False, max_seq_len_to_capture=8192, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config={}, limit_mm_per_prompt={}, mm_processor_kwargs=None, disable_mm_preprocessor_cache=False, enable_lora=None, enable_lora_bias=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=None, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', speculative_config=None, ignore_patterns=[], served_model_name=None, qlora_adapter_name_or_path=None, show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, max_num_batched_tokens=None, max_num_seqs=None, max_num_partial_prefills=1, max_long_partial_prefills=1, long_prefill_token_threshold=0, num_lookahead_slots=0, scheduler_delay_factor=0.0, preemption_mode=None, num_scheduler_steps=1, multi_step_stream_outputs=True, scheduling_policy='fcfs', enable_chunked_prefill=None, disable_chunked_mm_input=False, scheduler_cls='vllm.core.scheduler.Scheduler', override_neuron_config=None, override_pooler_config=None, compilation_config=None, kv_transfer_config=None, worker_cls='auto', worker_extension_cls='', generation_config='auto', override_generation_config=None, enable_sleep_mode=False, additional_config=None, enable_reasoning=False, disable_cascade_attn=False, disable_log_requests=False) INFO 05-12 11:01:56 [config.py:717] This model supports multiple tasks: {'score', 'reward', 'classify', 'embed', 'generate'}. Defaulting to 'generate'. WARNING 05-12 11:01:57 [config.py:830] awq quantization is not fully optimized yet. The speed can be slower than non-quantized models. WARNING 05-12 11:01:57 [arg_utils.py:1658] Compute Capability < 8.0 is not supported by the V1 Engine. Falling back to V0. WARNING 05-12 11:01:57 [arg_utils.py:1525] Chunked prefill is enabled by default for models with max_model_len > 32K. Chunked prefill might not work with some features or models. If you encounter any issues, please disable by launching with --enable-chunked-prefill=False. INFO 05-12 11:01:57 [config.py:1770] Defaulting to use mp for distributed inference INFO 05-12 11:01:57 [config.py:2003] Chunked prefill is enabled with max_num_batched_tokens=2048. INFO 05-12 11:01:57 [llm_engine.py:240] Initializing a V0 LLM engine (v0.8.5.post1) with config: model='/media/zhzx/ssd2/Qwen3-32B-AWQ', speculative_config=None, tokenizer='/media/zhzx/ssd2/Qwen3-32B-AWQ', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=True, dtype=torch.float16, max_seq_len=40960, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=2, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=awq, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='auto', reasoning_backend=None), observability_config=ObservabilityConfig(show_hidden_metrics=False, otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=None, served_model_name=/media/zhzx/ssd2/Qwen3-32B-AWQ, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=None, chunked_prefill_enabled=True, use_async_output_proc=True, disable_mm_preprocessor_cache=False, mm_processor_kwargs=None, pooler_config=None, compilation_config={"splitting_ops":[],"compile_sizes":[],"cudagraph_capture_sizes":[256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"max_capture_size":256}, use_cached_outputs=False, WARNING 05-12 11:01:57 [multiproc_worker_utils.py:306] Reducing Torch parallelism from 16 threads to 1 to avoid unnecessary CPU contention. Set OMP_NUM_THREADS in the external environment to tune this value as needed. (VllmWorkerProcess pid=100643) INFO 05-12 11:01:57 [multiproc_worker_utils.py:225] Worker ready; awaiting tasks INFO 05-12 11:01:57 [cuda.py:240] Cannot use FlashAttention-2 backend for Volta and Turing GPUs. INFO 05-12 11:01:57 [cuda.py:289] Using XFormers backend. (VllmWorkerProcess pid=100643) INFO 05-12 11:01:57 [cuda.py:240] Cannot use FlashAttention-2 backend for Volta and Turing GPUs. (VllmWorkerProcess pid=100643) INFO 05-12 11:01:57 [cuda.py:289] Using XFormers backend. INFO 05-12 11:01:58 [utils.py:1055] Found nccl from library libnccl.so.2 (VllmWorkerProcess pid=100643) INFO 05-12 11:01:58 [utils.py:1055] Found nccl from library libnccl.so.2 INFO 05-12 11:01:58 [pynccl.py:69] vLLM is using nccl==2.21.5 (VllmWorkerProcess pid=100643) INFO 05-12 11:01:58 [pynccl.py:69] vLLM is using nccl==2.21.5 (VllmWorkerProcess pid=100643) INFO 05-12 11:01:58 [custom_all_reduce_utils.py:244] reading GPU P2P access cache from /home/zhzx/.cache/vllm/gpu_p2p_access_cache_for_0,1.json INFO 05-12 11:01:58 [custom_all_reduce_utils.py:244] reading GPU P2P access cache from /home/zhzx/.cache/vllm/gpu_p2p_access_cache_for_0,1.json INFO 05-12 11:01:58 [shm_broadcast.py:266] vLLM message queue communication handle: Handle(local_reader_ranks=[1], buffer_handle=(1, 4194304, 6, 'psm_91501777'), local_subscribe_addr='ipc:///tmp/c7c55d66-4bbe-451b-a9f3-3133e26fdb9b', remote_subscribe_addr=None, remote_addr_ipv6=False) (VllmWorkerProcess pid=100643) INFO 05-12 11:01:58 [parallel_state.py:1004] rank 1 in world size 2 is assigned as DP rank 0, PP rank 0, TP rank 1 INFO 05-12 11:01:58 [parallel_state.py:1004] rank 0 in world size 2 is assigned as DP rank 0, PP rank 0, TP rank 0 INFO 05-12 11:01:58 [model_runner.py:1108] Starting to load model /media/zhzx/ssd2/Qwen3-32B-AWQ... (VllmWorkerProcess pid=100643) INFO 05-12 11:01:58 [model_runner.py:1108] Starting to load model /media/zhzx/ssd2/Qwen3-32B-AWQ... Loading safetensors checkpoint shards: 0% Completed | 0/4 [00:00<?, ?it/s] Loading safetensors checkpoint shards: 25% Completed | 1/4 [00:01<00:04, 1.51s/it] Loading safetensors checkpoint shards: 50% Completed | 2/4 [00:02<00:02, 1.36s/it] Loading safetensors checkpoint shards: 75% Completed | 3/4 [00:04<00:01, 1.52s/it] Loading safetensors checkpoint shards: 100% Completed | 4/4 [00:05<00:00, 1.41s/it] Loading safetensors checkpoint shards: 100% Completed | 4/4 [00:05<00:00, 1.43s/it] (VllmWorkerProcess pid=100643) INFO 05-12 11:02:04 [loader.py:458] Loading weights took 5.72 seconds INFO 05-12 11:02:04 [loader.py:458] Loading weights took 5.79 seconds INFO 05-12 11:02:05 [model_runner.py:1140] Model loading took 9.0568 GiB and 5.991388 seconds (VllmWorkerProcess pid=100643) INFO 05-12 11:02:05 [model_runner.py:1140] Model loading took 9.0568 GiB and 5.932729 seconds (VllmWorkerProcess pid=100643) INFO 05-12 11:02:10 [worker.py:287] Memory profiling takes 5.32 seconds (VllmWorkerProcess pid=100643) INFO 05-12 11:02:10 [worker.py:287] the current vLLM instance can use total_gpu_memory (23.64GiB) x gpu_memory_utilization (0.90) = 21.27GiB (VllmWorkerProcess pid=100643) INFO 05-12 11:02:10 [worker.py:287] model weights take 9.06GiB; non_torch_memory takes 0.13GiB; PyTorch activation peak memory takes 0.41GiB; the rest of the memory reserved for KV Cache is 11.68GiB. INFO 05-12 11:02:10 [worker.py:287] Memory profiling takes 5.46 seconds INFO 05-12 11:02:10 [worker.py:287] the current vLLM instance can use total_gpu_memory (23.64GiB) x gpu_memory_utilization (0.90) = 21.27GiB INFO 05-12 11:02:10 [worker.py:287] model weights take 9.06GiB; non_torch_memory takes 0.13GiB; PyTorch activation peak memory takes 1.40GiB; the rest of the memory reserved for KV Cache is 10.68GiB. INFO 05-12 11:02:11 [executor_base.py:112] # cuda blocks: 5469, # CPU blocks: 2048 INFO 05-12 11:02:11 [executor_base.py:117] Maximum concurrency for 40960 tokens per request: 2.14x INFO 05-12 11:02:13 [model_runner.py:1450] Capturing cudagraphs for decoding. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI. If out-of-memory error occurs during cudagraph capture, consider decreasing `gpu_memory_utilization` or switching to eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage. Capturing CUDA graph shapes: 0%| | 0/35 [00:00<?, ?it/s](VllmWorkerProcess pid=100643) INFO 05-12 11:02:13 [model_runner.py:1450] Capturing cudagraphs for decoding. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI. If out-of-memory error occurs during cudagraph capture, consider decreasing `gpu_memory_utilization` or switching to eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage. Capturing CUDA graph shapes: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 35/35 [00:29<00:00, 1.18it/s] INFO 05-12 11:02:43 [custom_all_reduce.py:195] Registering 4515 cuda graph addresses (VllmWorkerProcess pid=100643) INFO 05-12 11:02:43 [custom_all_reduce.py:195] Registering 4515 cuda graph addresses (VllmWorkerProcess pid=100643) INFO 05-12 11:02:43 [model_runner.py:1592] Graph capturing finished in 30 secs, took 0.97 GiB INFO 05-12 11:02:43 [model_runner.py:1592] Graph capturing finished in 30 secs, took 0.97 GiB INFO 05-12 11:02:43 [llm_engine.py:437] init engine (profile, create kv cache, warmup model) took 38.52 seconds INFO 05-12 11:02:43 [launcher.py:28] Available routes are: INFO 05-12 11:02:43 [launcher.py:36] Route: /openapi.json, Methods: GET, HEAD INFO 05-12 11:02:43 [launcher.py:36] Route: /docs, Methods: GET, HEAD INFO 05-12 11:02:43 [launcher.py:36] Route: /docs/oauth2-redirect, Methods: GET, HEAD INFO 05-12 11:02:43 [launcher.py:36] Route: /redoc, Methods: GET, HEAD INFO 05-12 11:02:43 [launcher.py:36] Route: /health, Methods: GET INFO 05-12 11:02:43 [launcher.py:36] Route: /generate, Methods: POST [rank0]: Traceback (most recent call last): [rank0]: File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/starlette/datastructures.py", line 668, in __getattr__ [rank0]: return self._state[key] [rank0]: ~~~~~~~~~~~^^^^^ [rank0]: KeyError: 'engine_client' [rank0]: During handling of the above exception, another exception occurred: [rank0]: Traceback (most recent call last): [rank0]: File "<frozen runpy>", line 198, in _run_module_as_main [rank0]: File "<frozen runpy>", line 88, in _run_code [rank0]: File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/entrypoints/api_server.py", line 177, in <module> [rank0]: asyncio.run(run_server(args)) [rank0]: File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/asyncio/runners.py", line 195, in run [rank0]: return runner.run(main) [rank0]: ^^^^^^^^^^^^^^^^ [rank0]: File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/asyncio/runners.py", line 118, in run [rank0]: return self._loop.run_until_complete(task) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/asyncio/base_events.py", line 691, in run_until_complete [rank0]: return future.result() [rank0]: ^^^^^^^^^^^^^^^ [rank0]: File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/entrypoints/api_server.py", line 129, in run_server [rank0]: shutdown_task = await serve_http( [rank0]: ^^^^^^^^^^^^^^^^^ [rank0]: File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/entrypoints/launcher.py", line 46, in serve_http [rank0]: watchdog_loop(server, app.state.engine_client)) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/starlette/datastructures.py", line 671, in __getattr__ [rank0]: raise AttributeError(message.format(self.__class__.__name__, key)) [rank0]: AttributeError: 'State' object has no attribute 'engine_client' [rank0]:[W512 11:02:45.924296727 ProcessGroupNCCL.cpp:1496] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator()) /home/zhzx/miniconda3/envs/vllm/lib/python3.12/multiprocessing/resource_tracker.py:255: UserWarning: resource_tracker: There appear to be 1 leaked shared_memory objects to clean up at shutdown warnings.warn('resource_tracker: There appear to be %d '
05-13
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值