Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
confused what "{1,#,2,3}"
means? > read more on how binary tree is serialized on OJ.
Just the property of bst, trick with long_min and max
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isValidBST(TreeNode *root) {
return helper(root, LONG_MIN,LONG_MAX);
}
bool helper(TreeNode* root, long min, long max){
if (root==0)
return true;
if (root->val<=min || root->val>=max)
return false;
return helper(root->left, min,root->val ) && helper(root->right, root->val, max);
}
};