MAST20018 – Discrete Mathematics and Operations Research 4

Java Python MAST20018 – Discrete Mathematics and Operations Research

Assignment 4

Upload to  Gradescope by 5pm  Wed 16th  October 2024

Question 1

Consider the following linear programming model:

max z = x1 + 2x2 + 3x3

subject to

x1 + 2x2 + 3x3 ≤ 10

x1 + x2            ≤ 5

x1                    ≤ 1

x1, x2, x3 ≥ 0

a) Find an optimal solution to the problem using the simplex algorithm with Bland’s rule. After you obtain the final tableau, write down the value of all variables and objective function.

b) Looking at the final tableau, how do you conclude that the solution is not unique?

c) Doing pivot operations, find an alternative optimal solution and write down the value of all variables and objective function. If there are many possible entering variables that would lead to an alternative optimal solution, choose the one with the smallest index.

Question 2

Consider the linear program

Maximize 4x1 + 3x2 − x3

subject to

x1 + 2x2 − x3 ≥ 4

x1 + x2 ≤ 8

2x1 − x2 ≤ 10

x1, x2, x3 ≥ 0

and solve it using the two-phase simplex algorithm with Bland’s rule.

Question 3

The B MAST20018 – Discrete Mathematics and Operations Research Assignment 4 ig-M method is an adaptation of the Simplex Algorithm which is used as an alternative to the Two-Phase Simplex method. A pseudo-code for the Big-M method is as follows:

ALGORITHM Big-M

Require: An LP in canonical form. with objective max z = f(x) and artificial variables y1 , ...,yp

Ensure: An optimal solution to the LP or a statement that the LP is infeasible or unbounded

1:  Let M be a very large constant

2:  Modify the objective of the LP to max z′ = f(x) − Mεi(p)=1 yi

3:  Employ  the  standard Simplex Algorithm to solve the LP with the modified objective.   The Optimality Criterion is satisfied when there are no more negative reduced costs in the columns

of the non-artificial variables

Consider the following Linear Program:

max z = x1 + x2

s.t.

x1 + x2 ≥ 1

2x1 + 3x2 ≤ 12

3x1 + 2x2 ≤ 12

x1, x2 ≥ 0

a)  Express the problem in canonical form. and solve using the Big-M simplex method with Bland’s rule.  When solving the problem, you should not substitute  M by a big number, but rather explicitly use the symbol M in your computations.

b)  Sketch the feasible region and identify the extreme point associated to each tableau you obtained in (a).

Hint: remember that you can only proceed with tableau operations once your tableau is in canonical form         

内容概要:本文介绍了一种基于蒙特卡洛模拟和拉格朗日优化方法的电动汽车充电站有序充电调度策略,重点针对分时电价机制下的分散式优化问题。通过Matlab代码实现,构建了考虑用户充电需求、电网负荷平衡及电价波动的数学模【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)型,采用拉格朗日乘子法处理约束条件,结合蒙特卡洛方法模拟大量电动汽车的随机充电行为,实现对充电功率和时间的优化分配,旨在降低用户充电成本、平抑电网峰谷差并提升充电站运营效率。该方法体现了智能优化算法在电力系统调度中的实际应用价值。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源汽车、智能电网相关领域的工程技术人员。; 使用场景及目标:①研究电动汽车有序充电调度策略的设计与仿真;②学习蒙特卡洛模拟与拉格朗日优化在能源系统中的联合应用;③掌握基于分时电价的需求响应优化建模方法;④为微电网、充电站运营管理提供技术支持和决策参考。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注目标函数构建、约束条件处理及优化求解过程,可尝试调整参数设置以观察不同场景下的调度效果,进一步拓展至多目标优化或多类型负荷协调调度的研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值