定义:一个有n个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。
最小生成树性质:设G=(V,E)是一个连通网络,U是顶点集V的一个非空真子集。若(u,v)是G中一条“一个端点在U中(例如:u∈U),另一个端点不在U中的边(例如:v∈V-U),且(u,v)具有最小权值,则一定存在G的一棵最小生成树包括此边(u,v)。
用反证法证明MST性质:
假设G中任何一棵MST都不含轻边(u,v)。则若T为G的任意一棵MST,那么它不含此轻边。
根据树的定义,则T中必有一条从红点u到蓝点v的路径P,且P上必有一条紫边(u’,v’)连接红点集和蓝点集,否则u和v不连通。当把轻边(u,v)加入树T时,该轻边和P必构成了一个回路。删去紫边(u’,v’)后回路亦消除,由此可得另一生成树T’。
T’和T的差别仅在于T’用轻边(u,v)取代了T中权重可能更大的紫边(u’,v’)。因为w(u,v)≤w(u’,v’),所以
w(T’)=w(T)+w(u,v)-w(u’,v’)≤w(T)
即T’是一棵比T更优的MST,所以T不是G的MST,这与假设矛盾。
普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法是两个利用MST性质构造最小生成树的算法。
普里姆算法
假设N= (V,{E})是连通网,TE是N上最小生成树中边的集合。算法从U={u0}(u0 ∈ V),TE={}开始,重复执行下述操作:在所有u∈U,v∈V-U的边(u,v)∈E中找一条代价最小的边(u0,v0)并入集合TE,同时v0并入U,直至U=V为止。此时TE中必有n-1条边,则T=(V,{TE})为N的最小生成树。