题目1:1049. 最后一块石头的重量 II - 力扣(LeetCode)
这道题主要的思路是把题目转换成分成两份,然后转换成一个重量为 sum / 2 的背包去装石头,尽可能将背包装的最大,那么最后最小省的石头就是 (sum - dp[j]) - dp[j] 前边是剩下的石头,后边是能装的最大的石头
class Solution {
public:
int lastStoneWeightII(vector<int>& stones) {
int sum = 0;
for(int i = 0;i < stones.size();i++) {
sum += stones[i];
}
int target = sum / 2;
vector<int> dp(target + 1);
for(int i = 0;i < stones.size();i++) {
for(int j = target;j >= stones[i];j--) {
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
// std::cout << dp[j] << std::endl;
}
// std::cout << "-------" << std::endl;
}
// std::cout << dp[target] << std::endl;
return sum - 2* dp[target];
}
};
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int target) {
int sum = 0;
for(int i = 0;i < nums.size();i++) {
sum += nums[i];
}
if((sum - target) % 2 != 0) return 0;
if(abs(target) > sum) return 0;
int bagweight = (sum - target) / 2;
vector<int> dp(bagweight + 1, 0);
dp[0] = 1;
for(int i = 0;i < nums.size();i++) {
for(int j = bagweight;j >= nums[i];j--) {
dp[j] += dp[j - nums[i]];
}
}
return dp[bagweight];
}
};
class Solution {
public:
int findMaxForm(vector<string>& strs, int m, int n) {
vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
for(string str : strs) {
int zernums = 0;
int onenums = 0;
for(char ch : str) {
if(ch == '0') zernums++;
else onenums++;
}
for(int i = m;i >= zernums;i--) {
for(int j = n;j >= onenums;j--) {
dp[i][j] = max(dp[i][j], dp[i - zernums][j - onenums] + 1);
}
}
}
return dp[m][n];
}
};