遗传算法原理以及matlab代码

本文深入解析遗传算法的原理,将其比喻为优化花朵大小的过程,详细介绍了选择、交叉和变异等步骤。参数编码是关键,通过二进制表示参数并进行交叉遗传和变异操作。提供了一个MATLAB实现的完整框架,包括初始化、选择、交叉、变异和筛选等函数,用于寻找函数最大值的问题。最后展示了代码示例和优化过程的可视化。
该文章已生成可运行项目,

目录

1,算法原理以及形象解释

2,参数编码

3,算法框架

4,代码  MATLAB

1,算法原理以及形象解释

       遗传算法(Genetic Algorithm, GA)是仿生物智能优化算法,是模拟达尔文生物进化论中自然选择,遗传变异,适者生存实现生物进化的优化模型。进化论解释了生物发展过程中,每一代种群在自然选择,遗传变异中不断朝更适应生存的方向发展,这本身就是优化的过程,遗传算法正是基于这一原理。(巴拉巴拉)

        通俗来讲,当我们希望种植花朵很大的玫瑰,希望花朵越大越好(“大”这个特征就是优化目标)。首先种植的第一批玫瑰(1.初始化第一个种群),挑选花朵大的玫瑰(2.选择优秀个体),然后利用这批优秀个体进行杂交得到子代(3.遗传交叉),然后还要考虑变异,因为变异也可能产生更优秀子代(4.变异),最后重复以上过程(for i=1:100;,,,,,)。

        以上这个优化过程,是人为控制选择,遗传交叉,变异。而遗传算法就是通过计算机来完成选择,遗传,变异,产生下一代种群,这些步骤。

2,参数编码

代码实现分析

        你们肯定会疑惑,遗传算法和参数编码有什么关系,不要慌,我们先回顾一下算法实现的核心:

代码实现的核心:

1.能够进行选择,挑选优秀个体

        (这个简单,计算每个个体对应目标值,对目标值设定一个最低标准,确定优秀个体)。

2.能够交叉,变异,得到新的子代。(关键)

        所以问题的关键就是如何实现交叉和变异。 这里就要用到参数编码.

        先分析生物遗传变异的机理,生物遗传杂交的过程就是染色体配对过程。而参数编码就是将参数转换成类染色体的数据,使之能够进行交叉变异。即二进制数据。比如 “01011101” ,八位二进制就表示八条染色体,每条染色体对应的值只有0和1。

二进制数据实现交叉遗传

       

        二进制数据实现交叉遗传:(代码中的一部分注释)

        % 对于下面两个父代,x1,x2。将染色体从中间分为两组,相互交叉遗传得到子代 y1,y2。
        % x1=01001 11010  交   y1=01001 00100
        % x2=10101 00100  叉   y2=10101 11010

 

        二进制数据实现变异:(代码中的一部分注释)

        %子代染色体序列中如果发生变异,将导致染色体 1 变为 0 , 0 变为 1 。例如:

        % x1=01001 1 1010,当发生变异,10个染色体随机一个染色体产生变异,当第五条染色体变异,则变异后的x1'=01001 0 1010。

        当然,变异是需要给定一定概率,变异率pm一般设置为染色体个数的倒数,rand(1)<pm时,发生变异

将参数进行二进制编码

       

        如图所示,为y=-2*x^2+20x,其中x [0,10]。x的值就可以看作我们的方案,y的值就是方案结果。所以参数编码就是对x值进行二进制编码,x的范围是0-10。现在就是思考采用多少个二进制位(根据对精度以及计算量的要求选择),这里选择10个二进制位,,即十个染色体。

        若染色体个数为10,则x=0变为p=00000 00000,x=10变为p=11111 11111。

        p的值共1024个,0-1023。

 x=10*(p/1023)

对参数进行编码后,就可以进行之后的交叉遗传、变异。

 

3,算法框架

以搜索最大值为例:

y=7*sin(1*x)+6*cos(4*x)+1.5*x+1  其中 x [0,10]

找到使y最大的x值

① 实现算法之前的准备

1.参数编码:x的范围是0-10,采用10个染色体,这样二进制共1023,精度u=10/1023=0.01。染色体个数用dim表示:                                       dim=10;

2.种群个数:就是一个种群的总个体数:                                           num=20;

3.迭代次数:根据复杂程度选择,这里10次就够了,一般100-200。 gen=10; 
4.变异率:一般设置为1/dim。                                                            pm=0.1; 
5.交叉率:这里设置的是0.6,60%概率交叉,可以自行尝试。          pc=0.6;   

②算法框架

初始化种群                                           p=init();

迭代开始

for i=a:gen

1.选择优秀个体                                     p_fit=fittest(p);

2,对原种群进行遗传交叉                    son1=crossover(p,pc);,

3。遗传交叉后,进行变异处理             son=mutation(son1,pm);

4.合并子代和父代:                              son=[p_fit;son];

之前没有讲解这里,其实就是进一步的筛选,将优秀父代和产生的子代合并,挑选出优秀的下一代种群。

5.这里的挑选采用的是锦标赛。就是对合并后的所以个体,随机抽搐两个或多个,选最优个体进入新种群。根据种群个数num=20,进行多轮锦标赛,得到新的种群p。

                                                              p=select(son);

end

迭代结束

即可算出最优解。如图所示

4,代码  MATLAB

my_ga.m(主函数)

init.m(初始化函数)

fittest.m(选择优秀父代个体)

crossover.m   (交叉遗传)

mutation.m    (变异)

select.m       (筛选出下一代种群,锦标赛选择法)

plot_ga.m  (画图,显示优化过程)

best.m  (迭代完成后,显示最优解以及最优方案)

my_ga.m(主函数)

clear
clc
dim=10;                 % 表示染色体的长度(即维数,二值数的长度),根据编码的长度决定
num=20;                 % 表示群体的大小,根据问题的复杂程度确定。
gen=10;                 % 迭代次数  该问题简单,这里只采用10次迭代,根据问题的复杂程度确定。
pm=0.1;                 % 变异概率,一般 1/dim
pc=0.6;                 % 交叉概率
p=init(num,dim);        % 初始化种群

for i=1:gen
    p_fit=fittest(p);       % 在种群中选择优秀个体 p_fit
    son1=crossover(p,pc);   % 在种群中进行遗传交叉得到子代 半成品
    son=mutation(son1,pm);  % 半成品子代还需进行编译才能成为真正子代 son
    son=[p_fit;son];        % 将优秀父代和子代合并 ,进行选择
    p=select(son);          % 采用锦标赛的选择算子,进行适者生存,才生新种群
    plot_ga(p)              % 画出新种群
end
[p_best,value]=best(p)      % 迭代后最终的最优个体

  init.m(初始化函数)

%init
% init.m是进行群体的初始化,产生初始种群,num表示群体的大小,dim表示染色体的长度(即维数,二值数的长度),

function pop=init(num,dim) 
pop=round(rand(num,dim)); 

  fittest.m(选择优秀父代个体)

% fittest.m
% 1,计算目标值,2.计算对应适应值
% 设定优秀阈值h,小于h不能直接进入下一代种群选择,大于h适应值为目标值,和子代一起进入选择。

% 1,计算目标值,
function p_fit=fittest(p)
x1=zeros([1,20]);
for i=1:20
   for j=1:10
        x1(i)=x1(i)+2^(10-j)*p(i,j);
   end
end
x=x1*10/1023;                       %2^10-1=1023
p1=7*sin(1*x)+6*cos(4*x)+1.5*x+1;   %计算目标值


% 2.计算对应适应值,以及确定优秀个体
h=3;
j=1;
for i=1:20
        if p1(i)>h                   
                p_fit(j,:)=p(i,:);    
                j=j+1;
        end    
end

   crossover.m   (交叉遗传)

% 交叉
% 对于下面两个父代,x1,x2。染色体被分为两组,相互交叉得到子代 y1,y2。
% x1=01001 11010  交   y1=01001 00100
% x2=10101 00100  叉   y2=10101 11010

function son=crossover(p,pc)    
s=size(p);
son=zeros(size(p));
for i=1:round(s(1)/2-0.5)                                            
        if(rand(1)<pc)
                cross=round(rand(1)*s(2));
                son((i-1)*2+1,:)=[p((i-1)*2+1,1:cross),p(i*2,cross+1:s(2))];
                son(i*2,:)=[p(i*2,1:cross),p((i-1)*2+1,cross+1:s(2))];
        else
                son((i-1)*2+1,:)=p((i-1)*2+1,:);
                son(i*2,:)=p(i*2,:);
        end
end

  mutation.m    (变异)

% mu1tation--变异
%子代染色体序列中,可能变异导致 1 变为 0 、 0 变为 1 。

function son=mutation(son1,pm)
    s=size(son1);
    son=zeros(s);
    for i=1:s(1)
        son(i,:)=son1(i,:);
        if(rand(1)<pm)
            multa=round(rand(1)*s(2)+0.5);     %产生的变异点在1-10之间
            if son(i,multa)==0
               son(i,multa)=1;
            else
               son(i,multa)=0;
            end
        end
    end
end


   select.m       (筛选出下一代种群,锦标赛选择法)

function p=select(son) 
p=zeros([20,10]);
s=size(son);
x1=zeros([1,s(1)]);
for i=1:s(1)
   for j=1:10
        x1(i)=x1(i)+2^(10-j)*son(i,j);
   end
end
x=x1*10/1023;                       %2^10-1=1023
p_obj1=7*sin(1*x)+6*cos(4*x)+1.5*x+1;   %计算目标函数值
p_obj1=p_obj1';
%第一赛季
randidx=randperm(s(1));            %打乱顺序进行锦标赛
son_s1=son(randidx,:);                        %第一赛季数据
p_s1=p_obj1(randidx,:); 
p_obj2=[];
son2=[];
for i=1:round(s(1)/2-0.5)
    if p_s1(2*i)>p_s1(2*i-1)
        p(i,:)=son_s1(2*i,:);
        p_obj2=[p_obj2;p_s1(2*i-1)];
        son2=[son2;son_s1(2*i-1,:)];
    else
        p(i,:)=son_s1(2*i-1,:);
        p_obj2=[p_obj2;p_s1(2*i)];
        son2=[son2;son_s1(2*i,:)];
    end
end

num_x=20-round(s(1)/2-0.5);
s_s2=size(son2);
randidx_s2=randperm(s_s2(1));            %打乱顺序进行锦标赛
son_s2=son2(randidx_s2,:);                        %第一赛季数据
p_s2=p_obj2(randidx_s2,:); 
if num_x>0
    d=round(s_s2(1)/num_x-0.5);
    for i=1:num_x
        [s2_max,s2_x]=max(p_obj2(d*(i-1)+1:d*i));
        p(round(s(1)/2-0.5)+i,:)=son_s2(d*(i-1)+s2_x,:);
    end
end


   plot_ga.m  (画图,显示优化过程)

function plot_ga(p)
clf(figure(1))
figure(1)
fplot(@(x)7.*sin(1.*x)+6.*cos(4.*x)+1.5.*x+1,[0 10])
x1=zeros([1,20]);
for i=1:20
   for j=1:10
        x1(i)=x1(i)+2^(10-j)*p(i,j);
   end
end
x=x1*10/1023;                       %2^10-1=1023
p1=7*sin(1*x)+6*cos(4*x)+1.5*x+1;   %计算目标值


hold on
plot(x,p1,'r*')
 
pause(0.5)  
% delete(plot(x,p1,'r*'))

  best.m  (迭代完成后,显示最优解以及最优方案)

function [p_best,value]=best(p)
x1=zeros([1,20]);
for i=1:20
   for j=1:10
        x1(i)=x1(i)+2^(10-j)*p(i,j);
   end
end
x=x1*10/1023;                       %2^10-1=1023
p1=7*sin(1*x)+6*cos(4*x)+1.5*x+1;   %计算目标值

[value,b]=max(p1);
p_best=p(b,:);


本文章已经生成可运行项目
简单的遗传算法,计算函数最值. function ga_main() % 遗传算法程序 % n-- 种群规模% ger-- 迭代次数% pc--- 交叉概率% pm-- 变异概率 % v-- 初始种群(规模为n)% f-- 目标函数值% fit-- 适应度向量 % vx-- 最优适应度值向量% vmfit-- 平均适应度值向量 clear all; close all; clc;%清屏 tic;%计时器开始计时 n=20;ger=100;pc=0.65;pm=0.05;%初始化参数 %以上为经验值,可以更改。 % 生成初始种群 v=init_population(n,22); %得到初始种群,22串长,生成20*22的0-1矩阵 [N,L]=size(v); %得到初始规模行,列 disp(sprintf('Number of generations:%d',ger)); disp(sprintf('Population size:%d',N)); disp(sprintf('Crossover probability:%.3f',pc)); disp(sprintf('Mutation probability:%.3f',pm)); %sprintf可以控制输出格式 % 待优化问题 xmin=0;xmax=9; %变量X范围 f='x+10*sin(x.*5)+7*cos(x.*4)'; % 计算适应度,并画出初始种群图形 x=decode(v(:,1:22),xmin,xmax);"位二进制换成十进制,%冒号表示对所有行进行操作。 fit=eval(f);%eval转化成数值型的 %计算适应度 figure(1);%打开第一个窗口 fplot(f,[xmin,xmax]);%隐函数画图 grid on;hold on; plot(x,fit,'k*');%作图,画初始种群的适应度图像 title('(a)染色体的初始位置');%标题 xlabel('x');ylabel('f(x)');%标记轴 % 迭代前的初始化 vmfit=[];%平均适应度 vx=[]; %最优适应度 it=1; % 迭代计数器 % 开始进化 while it<=ger %迭代次数 0代 %Reproduction(Bi-classist Selection) vtemp=roulette(v,fit);%复制算子 %Crossover v=crossover(vtemp,pc);%交叉算子 %Mutation变异算子 M=rand(N,L)<=pm;%这里的作用找到比0.05小的分量 %M(1,:)=zeros(1,L); v=v-2.*(v.*M)+M;%两个0-1矩阵相乘后M是1的地方V就不变,再乘以2. NICE!!确实好!!!把M中为1的位置上的地方的值变反 %这里是点乘 %变异 %Results x=decode(v(:,1:22),xmin,xmax);%解码,求目标函数值 fit=eval(f); %计算数值 [sol,indb]=max(fit);% 每次迭代中最优目标函数值,包括位置 v(1,:)=v(indb,:); %用最大值代替 fit_mean=mean(fit); % 每次迭代中目标函数值的平均值。mean求均值 vx=[vx sol]; %最优适应度值 vmfit=[vmfit fit_mean];%适应度均值 it=it+1; %迭代次数计数器增加 end
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值