GCD
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1803 Accepted Submission(s): 901
Problem Description
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
Output
For each test case,output the answer on a single line.
Sample Input
3
1 1
10 2
10000 72
Sample Output
1
6
260
Source
ECJTU 2009 Spring Contest
题意:
输入N,M
有多少X满足GCD(X,N)>=M (1<=X<=N)
思路:可以枚举d=GCD(X,N),可以发现,d一定是N的因子,如果d>=m,那么所有小于等于d且与d互质的数p与N的GCD都是d,所以求出φ(n/d)即可
- 1.
#include<cstdio>
#include<cmath>
int Euler(int n) {
if (n == 1)
return 1;
int i = 2, m = n, root = (int) sqrt(n);
while (i <= root) {
if (m % i == 0) {
n -= n / i;
while (m % i == 0)
m /= i;
root = (int) sqrt(m);
}
i++;
}
if (m != 1) {
n -= n / m;
}
return n;
}
int solve(int n, int m) {
int nn = sqrt(n), ans = 0;
for (int i = 1; i <= nn; i++) {
if (n % i)
continue;
if (i >= m && i != nn)
ans += Euler(n / i);
if (n / i >= m)
ans += Euler(i);
}
return ans;
}
int main() {
int n, t, m;
scanf("%d", &t);
while (t--) {
scanf("%d%d", &n, &m);
printf("%d\n", solve(n, m));
}
return 0;
}