The Four-Way Handshake

本文详细介绍了WPA协议中的四次握手过程,包括认证过程、密钥交换和密钥生成机制,阐述了PMK、PTK、GTK等关键概念以及它们在确保无线网络安全中的作用。

 

The authentication process leaves two considerations: the access point (AP) still needs to authenticate itself to the client station (STA), and keys to encrypt the traffic need to be derived. The earlier EAP exchange has provided the shared secret key PMK (Pairwise Master Key). This key is, however, designed to last the entire session and should be exposed as little as possible. Therefore the four-way handshake is used to establish another key called the PTK (Pairwise Transient Key). The PTK is generated by concatenating the following attributes: PMK, AP nonce (ANonce), STA nonce (SNonce), AP MAC address, and STA MAC address. The product is then put through a cryptographic hash function.

The handshake also yields the GTK (Group Temporal Key), used to decrypt multicast and broadcast traffic. The actual messages exchanged during the handshake are depicted in the figure and explained below:

The Four-Way Handshake in 802.11i
  1. The AP sends a nonce-value to the STA (ANonce). The client now has all the attributes to construct the PTK.
  2. The STA sends its own nonce-value (SNonce) to the AP together with a MIC, including authentication, which is really a Message Authentication and Integrity Code: (MAIC).
  3. The AP sends the GTK and a sequence number together with another MIC. This sequence number will be used in the next multicast or broadcast frame, so that the receiving STA can perform basic replay detection.
  4. The STA sends a confirmation to the AP.

All the above messages are sent as EAPOL-Key frames.

As soon as the PTK is obtained it is divided into five separate keys:

PTK (Pairwise Transient Key – 64 bytes)

  1. 16 bytes of EAPOL-Key Confirmation Key (KCK)– Used to compute MIC on WPA EAPOL Key message
  2. 16 bytes of EAPOL-Key Encryption Key (KEK) - AP uses this key to encrypt additional data sent (in the 'Key Data' field) to the client (for example, the RSN IE or the GTK)
  3. 16 bytes of Temporal Key (TK) – Used to encrypt/decrypt Unicast data packets
  4. 8 bytes of Michael MIC Authenticator Tx Key – Used to compute MIC on unicast data packets transmitted by the AP
  5. 8 bytes of Michael MIC Authenticator Rx Key – Used to compute MIC on unicast data packets transmitted by the station

The Michael MIC Authenticator Tx/Rx Keys provided in the handshake are only used if the network is using TKIP to encrypt the data.

 

 

http://www.stanford.edu/class/cs259/WWW04/projects/project04/04%20-%20Slides.pdf

MPLLA force enable. When asserted, the corresponding MPLL is forced to be powered up, irrespective of the txX_mpll_en input. DWC_PCLK_AS_PHY_INPUT==ON and pipe_laneX_ext_pll_mode==0 and IN_PCLK SOURCE MPLL_CLK MODE and phyN_mplla_*_clk is used as a source of IN_PCLK): ■ Default value of this signal should be 0b. In initial sequence, this signal should be asserted with either one of following option1 or option2. ■ Initial sequence-Option1 (contact Synopsys for details) : This signal can be asserted when phy_reset is de-asserted and pipe_laneX_reset_n is asserted, with writing to PHY register. Once this signal is asserted, pipe_laneX_reset_n can be deasserted only after phyN_mplla_foce_ack is asserted. ■ Initial sequence-Option2(regular sequence) : This signal can be asserted after phy_reset and pipe_laneX_reset_n is de-asserted and after pipe_laneX_phystatus is also de-asserted. ■ The signal should be kept 1b when any links which use the MPLL clock as Input PCLK are in PCLK on powerdown states. ■ This signal should be updated from 1b to 0b only after all links which use the MPLL clock as source of Input PCLK complete PCLK off powerdown state transition(PCIe : P1_CPM, P2, P2_CPM, P2_NOBEACON ). Phystatus are 1-shot pulse with synchronous to PCLK, and PCLK can be disable only after that. ■ This signal should be updated from 0b to 1b before any links which use the MPLL clock as Input PCLK exit from PCLK off powerdown states (PCIe : P1_CPM, P2, P2_CPM, P2_NOBEACON). PowerDown is synchronous to PCLK, and PCLK should be active before changing the signal. ■ A four-way request-ack handshake must be followed with phyN_mplla_force_ack signal. This signal can be changed from 0b to 1b only when phyN_mplla_force_ack==0b.This signal can be changed from 1b to 0b only when phyN_mplla_force_ack==1b. (DWC_PCLK_AS_PHY_INPUT==OFF) || (DWC_PCLK_AS_PHY_INPUT==ON and pipe_laneX_ext_pll_mode==0 and IN_PCLK SOURCE MAX_PCLK MODE) || (DWC_PCLK_AS_PHY_INPUT==ON and pipe_laneX_ext_pll_mode==1) || (DWC_PCLK_AS_PHY_INPUT==ON and pipe_laneX_ext_pll_mode==0 and IN_PCLK SOURCE MPLL_CLK MODE and phyN_mplla_*_clk is NOT used as a source of IN_PCLK)
06-19
分布式微服务企业级系统是一个基于Spring、SpringMVC、MyBatis和Dubbo等技术的分布式敏捷开发系统架构。该系统采用微服务架构和模块化设计,提供整套公共微服务模块,包括集中权限管理(支持单点登录)、内容管理、支付中心、用户管理(支持第三方登录)、微信平台、存储系统、配置中心、日志分析、任务和通知等功能。系统支持服务治理、监控和追踪,确保高可用性和可扩展性,适用于中小型企业的J2EE企业级开发解决方案。 该系统使用Java作为主要编程语言,结合Spring框架实现依赖注入和事务管理,SpringMVC处理Web请求,MyBatis进行数据持久化操作,Dubbo实现分布式服务调用。架构模式包括微服务架构、分布式系统架构和模块化架构,设计模式应用了单例模式、工厂模式和观察者模式,以提高代码复用性和系统稳定性。 应用场景广泛,可用于企业信息化管理、电子商务平台、社交应用开发等领域,帮助开发者快速构建高效、安全的分布式系统。本资源包含完整的源码和详细论文,适合计算机科学或软件工程专业的毕业设计参考,提供实践案例和技术文档,助力学生和开发者深入理解微服务架构和分布式系统实现。 【版权说明】源码来源于网络,遵循原项目开源协议。付费内容为本人原创论文,包含技术分析和实现思路。仅供学习交流使用。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值