
As an example, consider a window in a windowing system. To allow scrolling of the window's contents, we may wish to add horizontal or vertical scrollbars to it, as appropriate. Assume windows are represented by instances of the Window class, and assume this class has no functionality for adding scrollbars. We could create a subclass ScrollingWindow that provides them, or we could create a ScrollingWindowDecorator that adds this functionality to existing Window objects. At this point, either solution would be fine.
Now let's assume we also wish the option to add borders to our windows. Again, our original Window class has no support. The ScrollingWindow subclass now poses a problem, because it has effectively created a new kind of window. If we wish to add border support to all windows, we must create subclasses WindowWithBorder and ScrollingWindowWithBorder. Obviously, this problem gets worse with every new feature to be added. For the decorator solution, we simply create a new BorderedWindowDecorator—at runtime, we can decorate existing windows with the ScrollingWindowDecorator or the BorderedWindowDecorator or both, as we see fit.
Another good example of where a decorator can be desired is when there is a need to restrict access to an object's properties or methods according to some set of rules or perhaps several parallel sets of rules (different user credentials, etc.) In this case instead of implementing the access control in the original object it is left unchanged and unaware of any restrictions on its use, and it is wrapped in an access control decorator object, which can then serve only the permitted subset of the original object's interface.
本文探讨了装饰者模式在为对象动态添加职责时的优势。通过实例说明如何使用装饰者模式来扩展功能,避免了子类爆炸的问题,并介绍了如何利用该模式进行权限控制。
659

被折叠的 条评论
为什么被折叠?



