EfficientNet 简介

本文探讨了EfficientNet如何通过NAS技术平衡深度、宽度和分辨率,以实现高效能的网络设计。MBConv结构的关键组成部分,如1x1卷积、Depthwise Conv和SE模块,以及EfficientNet系列模型(B0-B7)的详细配置,展示了如何通过复合缩放方法优化网络性能。

EfficientNet

单独适当增大深度、宽度或分辨率都可以提高网络的精确性,但随着模型的增大,其精度增益却会降低。此外,这三个维度并不是独立的(如:高分辨率图像需要更深的网络来获取更细粒度特征等),需要我们协调和平衡不同尺度的缩放,而不是传统的一维缩放。EfficientNet 的设想就是能否设计一个标准化的卷积网络扩展方法,既可以实现较高的准确率,又可以充分的节省算力资源。其通过 NAS(Neural Architecture Search)技术来搜索网络的图像输入分辨率 r,网络的深度 depth 以及 channel 的宽度 width 三个参数的合理化配置。
在这里插入图片描述

  • 增加网络的深度 depth 能够得到更加丰富、复杂的特征并且能够很好的应用到其它任务中。但网络的深度过深会面临梯度消失,训练困难的问题
  • 增加网络的 width 够获得更高细粒度的特征并且也更容易训练,但对于 width 很大而深度较浅的网络往往很难学习到更深层次的特征
  • 增加输入网络的图像分辨率能够潜在地获得更高细粒度的特征模板,但对于非常高的输入分辨率,准确率的增益也会减小。并且大分辨率图像会增加计算量

第 i 个 层 的 操 作 可 以 看 成 映 射 函 数 : Y i = F i ( X i ) 若 网 络 N 由 k 个 层 组 成 的 , 则 可 表 示 为 : N = F k ⨀ . . . ⨀ F 2 ⨀ F 1 ( X 1 ) = ⨀ j = 1... k F i ( X 1 ) 论 文 中 对 整 个 网 络 的 运 算 进 行 抽 象 : N = ⨀ i = 1... s F i L i ( X < H i , W i , C i > ) \begin{aligned} &第 i 个层的操作可以看成映射函数:Y_i = F_i(X_i) \\ &若网络 N 由 k 个层组成的,则可表示为:N = F_k \bigodot ... \bigodot F_2 \bigodot F_1(X_1) = \bigodot_{j=1...k}F_i(X_1) \\ &论文中对整个网络的运算进行抽象:N = \bigodot_{i=1...s}F_i^{L_i}(X_{<H_i, W_i, C_i>}) \\ \end{aligned} iYi=Fi(Xi)NkN=Fk...F2F1(X1)=j=1...kFi(X1)N=i=1

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值