hive中partition分区概念

本文详细介绍了Hive中分区的概念及其实现方式,包括单分区和多分区的创建、添加及删除分区的方法,以及如何利用分区来提高查询效率。
网上有篇关于hive的partition的使用讲解的比较好,转载了:
一、背景
1、在Hive Select查询中一般会扫描整个表内容,会消耗很多时间做没必要的工作。有时候只需要扫描表中关心的一部分数据,因此建表时引入了partition概念。
2、分区表指的是在创建表时指定的partition的分区空间。
3、如果需要创建有分区的表,需要在create表的时候调用可选参数partitioned by,详见表创建的语法结构。
二、技术细节
1、一个表可以拥有一个或者多个分区,每个分区以文件夹的形式单独存在表文件夹的目录下。
2、表和列名不区分大小写。
3、分区是以字段的形式在表结构中存在,通过describe table命令可以查看到字段存在,但是该字段不存放实际的数据内容,仅仅是分区的表示。
4、建表的语法(建分区可参见PARTITIONED BY参数):
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name [(col_name data_type [COMMENT col_comment], ...)] [COMMENT table_comment] [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)] [CLUSTERED BY (col_name, col_name, ...) [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS] [ROW FORMAT row_format] [STORED AS file_format] [LOCATION hdfs_path]
5、分区建表分为2种,一种是单分区,也就是说在表文件夹目录下只有一级文件夹目录。另外一种是多分区,表文件夹下出现多文件夹嵌套模式。
a、单分区建表语句:create table day_table (id int, content string) partitioned by (dt string);单分区表,按天分区,在表结构中存在id,content,dt三列。
b、双分区建表语句:create table day_hour_table (id int, content string) partitioned by (dt string, hour string);双分区表,按天和小时分区,在表结构中新增加了dt和hour两列。
表文件夹目录示意图(多分区表):
6、添加分区表语法(表已创建,在此基础上添加分区):
ALTER TABLE table_name ADD partition_spec [ LOCATION 'location1' ] partition_spec [ LOCATION 'location2' ] ... partition_spec: : PARTITION (partition_col = partition_col_value, partition_col = partiton_col_value, ...)
用户可以用 ALTER TABLE ADD PARTITION 来向一个表中增加分区。当分区名是字符串时加引号。例:
ALTER TABLE day_table ADD PARTITION (dt='2008-08-08', hour='08') location '/path/pv1.txt' PARTITION (dt='2008-08-08', hour='09') location '/path/pv2.txt';
7、删除分区语法:
ALTER TABLE table_name DROP partition_spec, partition_spec,...
用户可以用 ALTER TABLE DROP PARTITION 来删除分区。分区的元数据和数据将被一并删除。例:
ALTER TABLE day_hour_table DROP PARTITION (dt='2008-08-08', hour='09');
8、数据加载进分区表中语法:
LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]
例:
LOAD DATA INPATH '/user/pv.txt' INTO TABLE day_hour_table PARTITION(dt='2008-08- 08', hour='08'); LOAD DATA local INPATH '/user/hua/*' INTO TABLE day_hour partition(dt='2010-07- 07');
当数据被加载至表中时,不会对数据进行任何转换。Load操作只是将数据复制至Hive表对应的位置。数据加载时在表下自动创建一个目录,文件存放在该分区下。
9、基于分区的查询的语句:
SELECT day_table.* FROM day_table WHERE day_table.dt>= '2008-08-08';
10、查看分区语句:
hive> show partitions day_hour_table; OK dt=2008-08-08/hour=08 dt=2008-08-08/hour=09 dt=2008-08-09/hour=09
三、总结
1、在 Hive 中,表中的一个 Partition 对应于表下的一个目录,所有的 Partition 的数据都存储在最字集的目录中。
2、总的说来partition就是辅助查询,缩小查询范围,加快数据的检索速度和对数据按照一定的规格和条件进行管理。
Hive中,分区Partition)是一种将表数据按照指定的列进行逻辑划分和存储的方式。通过将数据按照某个列的值进行分区,可以提高查询效率和数据管理的灵活性。 具体来说,以下是关于Hive分区的一些概念和特点: 1. 分区列(Partition Column):分区列是表中用于进行分区的列。通常选择具有高基数(Distinct Value)的列作为分区列,以便更好地划分数据并提高查询性能。 2. 分区目录(Partition Directory):每个分区都会对应一个独立的目录,用于存储该分区的数据文件。分区目录的命名通常基于分区列的值,以便更好地组织和管理数据。 3. 动态分区(Dynamic Partition):Hive支持动态分区,在插入数据时根据数据中的列值动态创建和管理分区。这允许在插入数据时自动创建新的分区目录。 4. 静态分区(Static Partition):与动态分区相反,静态分区需要在创建表时明确地定义所有分区,并提前创建对应的分区目录。 5. 多级分区(Multi-level Partitioning):Hive还支持多级分区,即在一个表中使用多个列进行分区。这样可以更细粒度地划分数据,提供更灵活的查询和管理能力。 通过使用表分区,可以使Hive在处理大规模数据时更高效地执行查询操作。例如,当查询仅涉及特定分区时,Hive可以仅加载相关分区的数据,而不必加载整个表的数据。此外,分区还可以帮助优化数据存储和管理,以及提供更灵活的数据查询和过滤功能。 需要注意的是,在设计和使用表分区时,需要考虑数据分布的均匀性、查询模式、分区列的选择等因素,以确保最佳的性能和使用效果。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值