package com.spark.streaming
import java.net.InetSocketAddress
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.flume.FlumeUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}
/**
* sparkStreaming整合flume 拉模式Poll
*/
object SparkStreamingFlumePoll {
System.setProperty("hadoop.home.dir", "d://soft//hadoop//hadoop-2.7.3")
//newValues 表示当前批次汇总成的(word,1)中相同单词的所有的1
//runningCount 历史的所有相同key的value总和
def updateFunction(newValues: Seq[Int], runningCount: Option[Int]): Option[Int] = {
val newCount =runningCount.getOrElse(0)+newValues.sum
Some(newCount)
}
def main(args: Array[String]): Unit = {
//配置sparkConf参数
val sparkConf = new SparkConf().setAppName("SparkStreaming_Flume_Poll").setMaster("local[2]")
//构建sparkContext对象
val sc = new SparkContext(sparkConf)
sc.setLogLevel("WARN")
//构建StreamingContext对象,每个批处理的时间间隔
val scc = new StreamingContext(sc, Seconds(5))
//设置checkpoint
scc.checkpoint("./")
//设置flume的地址,可以设置多台
val address = Seq(new InetSocketAddress("star.com",8888))
// 从flume中拉取数据
val flumeStream = FlumeUtils.createPollingStream(scc,address,StorageLevel.MEMORY_AND_DISK)
//获取flume中数据,数据存在event的body中,转化为String
val lineStream = flumeStream.map(x=>new String(x.event.getBody.array()))
//实现单词汇总
val result = lineStream.flatMap(_.split(" ")).map((_,1)).updateStateByKey(updateFunction)
result.print()
scc.start()
scc.awaitTermination()
}
}
测试和配置信息https://blog.youkuaiyun.com/star5610/article/details/106522455