论文下载
bib:
@INPROCEEDINGS{
PiLi2016SPBL,
title = {
Self-Paced Boost Learning for Classification},
author = {
Te Pi and Xi Li and Zhongfei Zhang and Deyu Meng and Fei Wu and Jun Xiao and Yueting Zhuang},
booktitle = {
IJCAI},
year = {
2016},
pages = {
1932--1938}
}
1. 摘要
Effectivenessandrobustnessare two essential aspects of supervised learning studies.
For effective learning, ensemble methods are developed to build a strong effective model from ensemble of weak models.
For robust learning, self-paced learning (
SPL) is proposed to learn in a self-controlled pace from easy samples to complex ones.
Motivated by simultaneously enhancing the learning effectiveness and robustness, we propose a unified framework, Self-Paced Boost Learning (SPBL).
With an adaptive from-easy-to-hard pace in boosting process, SPBL asymptotically guides the model to focus more on the insufficiently learned samples with higher reliability.
Via a max-margin boosting optimization with self-paced sample selection, SPBL is capable of capturing the intrinsic inter-class discriminative patterns while ensuring the reliability of the samples involved in learning.
We formulate SPBL as a fully-corrective optimization for classification.
The experiments on several real-world datasets show the superiority of SPBL in terms of both effectiveness and robustness.
Note:
- 将
Self-paced learning(自步学习,从容易到难的学习)和Boost(集成学习)融合在一起,同时保证有效性与鲁棒性。
2. 算法
问题:多分类问题
y ~ ( x ) = arg max r ∈ { 1 , … , C } F r ( x ; Θ ) (1) \widetilde{y}(x) = \argmax_{r \in \{1, \dots, C\} }F_r(x; \Theta) \tag{1} y
(x)=r∈{
1,…,C}argmaxFr(x;Θ)(1)
- { ( x i , y i ) } i = 1 n \{(x_i, y_i)\}_{i=1}^n {(xi,yi)}i=1n 表示带标签的训练数据,其中又 n n n个带标签的样本。 x i ∈ R d x_i \in \mathbb{R}^d xi∈Rd 是第 i i i个样本的特征, y i ∈ { 1 , … , C } y_i \in \{1, \dots, C\} yi∈{ 1,…,C}表示第个样本的标签。
- F r ( ⋅ ) : R d → R F_r(\cdot):\mathbb{R}^d \rightarrow \mathbb{R} Fr(⋅):Rd→R 表示将样本 x x x分类到类别 r r r的置信度得分。
值得注意的是, 这里相当于将多分类问题转化为了 C C C个二分类问题,对应于OvA策略。优点是只用训练类别数目 C C

该论文提出了一种名为Self-PacedBoostLearning(SPBL)的新框架,旨在同时提升监督学习的有效性和鲁棒性。SPBL通过自适应的从易到难的学习节奏,在Boosting过程中引导模型关注未充分学习的样本。通过最大化边距的Boosting优化和自我节奏的样本选择,SPBL能够在确保样本可靠性的前提下捕捉内在的类别判别模式。实验证明,SPBL在效果和稳定性上均优于传统方法,尤其适用于多分类问题。
最低0.47元/天 解锁文章
4110






