Multi-Language Programming : Simplifying web service programming

本文探讨了通用对象环境如何管理多种语言的接口对象,并通过实现SOAP接口成为WebService代理,简化了WebService开发。应用程序在此环境中调用WebService如同本地函数调用一样便捷。

     Let’s go deeper into common object environment. The environment manages interface objects of multiple different languages and provides interface to these languages to define object’s attributes, functions and events. It holds all information and parameters about the objects.       Therefore, it can act as a proxy to other applications outside to complete some functions or function calls.
    Web service is a popular method of remote call, which uses SOAP as interface standard. Common object environment can implement SOAP interface, and thus become a proxy for web service. This will simply the development of web service. The applications, components or libraries developed based on the environment may not aware of web service call. There are no difference between web service calls and normal calls. Let’s use a diagram to further illustrate.

    In above figure, a class object defined in java language has a function “Add”. For its c/c++ instance, application can call “Add” function through environment as previously talked about. The “Add” function of c/c++ instance can also be used as web service. In this case, the WSDL file can be generated automatically by environment proxy. Other application can get WSDL of the instance by http post request. Then, they can initiate web service call, and the proxy routing the call to the function of the class object. The class object does not know whether the call is web service call or normal function call. It only needs to implement the “Add” function body using java. Is it simple?
    Common object environment holds all information of interface. Thus, it can act as a proxy and generate WSDL file to provide web service function to outside applications, which will simply the development of web services.

### LightGCN 在推荐系统中的应用 LightGCN 是一种专门为推荐系统设计的轻量级图卷积网络 (Graph Convolutional Network, GCN),其核心目标是在保持高性能的同时减少计算复杂度和参数数量。以下是关于 LightGCN 的实现及其优化的关键点: #### 1. **模型结构** LightGCN 去除了传统 GCN 中常见的两个操作——特征转换和非线性激活函数[^1]。这种简化不仅减少了模型的复杂性和训练时间,还提高了推荐系统的性能。 - 特征转换被移除意味着不再需要学习额外的权重矩阵 \( W_1 \) 和 \( W_2 \)[^4]。 - 非线性激活函数也被省略,从而进一步降低了计算开销。 通过这些修改,LightGCN 能够专注于传播用户的嵌入表示,而无需引入复杂的变换或激活机制。 #### 2. **预测层的设计** 在传统的基于 GCN 的方法(如 NGCF)中,最终的用户和物品嵌入通常是多层嵌入的拼接 (concatenation) 结果。然而,LightGCN 将这一过程替换为加权求和的方式。具体来说,每一层的嵌入都被赋予不同的权重,并通过对这些嵌入进行加权平均来生成最终的表示。 公式如下所示: \[ e_u^{(K)} = \sum_{k=0}^{K} w_k e_u^{(k)} \] 其中 \( e_u^{(k)} \) 表示第 \( k \)-th 层的用户嵌入,\( w_k \) 则是对应的权重系数。 #### 3. **损失函数与正则化** 为了提高推荐质量并防止过拟合,LightGCN 使用了贝叶斯个性化排名 (Bayesian Personalized Ranking, BPR) 损失作为主要的目标函数。BPR 损失鼓励模型更倾向于用户已交互过的项目而非未交互的项目。 此外,L2 正则化项也用于约束模型参数,以提升泛化能力。 #### 4. **实验验证** 研究表明,尽管 LightGCN 的架构非常简单,但它仍然能够在多个公开数据集上取得优于其他复杂模型的结果。这表明,对于推荐任务而言,简单的消息传递机制可能已经足够有效。 --- ### Python 实现代码示例 以下是一个简化的 LightGCN 模型实现框架: ```python import torch import torch.nn as nn import torch.optim as optim class LightGCN(nn.Module): def __init__(self, num_users, num_items, embedding_dim, n_layers): super(LightGCN, self).__init__() self.num_users = num_users self.num_items = num_items self.embedding_dim = embedding_dim self.n_layers = n_layers # 初始化用户和项目的嵌入 self.user_embedding = nn.Embedding(num_users, embedding_dim) self.item_embedding = nn.Embedding(num_items, embedding_dim) def forward(self, adjacency_matrix): all_embeddings = torch.cat([self.user_embedding.weight, self.item_embedding.weight], dim=0) embeddings_list = [all_embeddings] for _ in range(self.n_layers): all_embeddings = torch.sparse.mm(adjacency_matrix, all_embeddings) embeddings_list.append(all_embeddings) final_embeddings = sum(embeddings_list) / (self.n_layers + 1) user_final_embeddings, item_final_embeddings = torch.split(final_embeddings, [self.num_users, self.num_items]) return user_final_embeddings, item_final_embeddings # 示例初始化 num_users = 1000 num_items = 500 embedding_dim = 64 n_layers = 3 model = LightGCN(num_users=num_users, num_items=num_items, embedding_dim=embedding_dim, n_layers=n_layers) optimizer = optim.Adam(model.parameters(), lr=0.001) ``` --- ### 性能对比分析 相比于其他先进的推荐算法(例如 KGAT 或者强化学习方法),LightGCN 主要具有以下几个优势[^2]: - 更少的超参数调整需求; - 显著降低的内存占用; - 可扩展性强,适合大规模稀疏场景下的高效推理。 不过需要注意的是,在某些特定领域(比如涉及知识图谱的任务),像 KGAT 这样的模型可能会提供更加丰富的语义信息支持。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值