计算机毕业设计Python+大模型知识图谱中华古诗词可视化 古诗词智能问答系统 古诗词数据分析 古诗词情感分析 PyTorch Tensorflow LSTM

部署运行你感兴趣的模型镜像

温馨提示:文末有 优快云 平台官方提供的学长联系方式的名片!

温馨提示:文末有 优快云 平台官方提供的学长联系方式的名片!

温馨提示:文末有 优快云 平台官方提供的学长联系方式的名片!

开发技术:

  1. 前端:vue.js echarts D3.js
  2. 后端:Flask/Django
  3. 机器学习/深度学习:LSTM情感分析模型、PyTorch、Tensorflow、阿里千问大模型精调、chatgpt、卷积神经网络CNN/RNN
  4. 爬虫:drssionpage框架(全新技术,反爬强悍)
  5. 数据库:mysql关系型数据库、neo4j图数据库、mongodb


吊打答辩现场的要点总结:
1-百万数据爬虫
2-大模型的应用
3-智能问答
4-深度学习模型训练优化:LSTM、PyTorch、Tensorflow、卷积神经网络CNN/RNN
5-Neo4J知识图谱显摆
6-自动即兴发挥写诗
7-可视化大屏
8-情感分析

核心算法代码分享如下:

from 古诗生成.wu_poem.test_pome import generate_poetry_auto,train_vec,cang
from 古诗生成.qi_poem.test_pome import generate_poetry_auto as qi_generate_poetry_auto,train_vec as qi_train_vec,cang as qi_cang
import torch
import torch.nn as nn
import numpy as np
from gensim.models.word2vec import Word2Vec
import pickle
import os

class Mymodel(nn.Module):

    def __init__(self,embedding_num,hidden_num,word_size):
        super(Mymodel, self).__init__()

        self.embedding_num=embedding_num
        self.hidden_num = hidden_num
        self.word_size = word_size
        #num_layer:两层,代表层数,出来后的维度[5,31,64],设置hidden_num=64
        self.lstm=nn.LSTM(input_size=embedding_num,hidden_size=hidden_num,batch_first=True,num_layers=2,bidirectional=False)
        #做一个随机失活,防止过拟合,同时可以保持生成的古诗不唯一
        self.dropout=nn.Dropout(0.3)
        #做一个flatten,将维度合并【5*31,64】
        self.flatten=nn.Flatten(0,1)
        #加一个线性层:[64,词库大小]
        self.linear=nn.Linear(hidden_num,word_size)
        #交叉熵
        self.cross_entropy=nn.CrossEntropyLoss()

    def forward(self,xs_embedding,h_0=None,c_0=None):
        device = "cuda" if torch.cuda.is_available() else "cpu"
        xs_embedding=xs_embedding.to(device)
        if h_0==None or c_0==None:
            #num_layers,batch_size,hidden_size
            h_0=torch.tensor(np.zeros((2,xs_embedding.shape[0],self.hidden_num),np.float32))
            c_0 = torch.tensor(np.zeros((2, xs_embedding.shape[0], self.hidden_num),np.float32))
        h_0=h_0.to(device)
        c_0=c_0.to(device)
        hidden,(h_0,c_0)=self.lstm(xs_embedding,(h_0,c_0))
        hidden_drop=self.dropout(hidden)
        flatten_hidden=self.flatten(hidden_drop)
        pre=self.linear(flatten_hidden)

        return pre,(h_0,c_0)

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值