多维输入的情况
需要自行下载数据集diabetes.csv.gz
根据视频
import torch
import numpy as np
xy = np.loadtxt('diabetes.csv.gz', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy(xy[:-1, :-1])
y_data = torch.from_numpy(xy[:-1, [-1]])
x_test = torch.from_numpy(xy[[-1], :-1])
y_test = torch.from_numpy(xy[[-1], [-1]])
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6)
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x))
return x
model = Model()
criterion = torch.nn.BCELoss(size_average=True)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
for epoch in range(1000):
y_pre = model(x_data)
loss = criterion(y_pre, y_data)
print(epoch,'loss=',loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
y_pre= model(x_test)
print("y_pre = ", y_pre.item())
print("y_test = ", y_test.item())